

doi: 10.25005/2074-0581-2018-20-2-3-207-211

ВЫЯВЛЕНИЕ ЛЕКАРСТВЕННОЙ АЛЛЕРГИИ НА ПРОТИВОТУБЕРКУЛЁЗНЫЕ ПРЕПАРАТЫ С ИСПОЛЬЗОВАНИЕМ РЕАКЦИИ СЕНСИБИЛИЗАЦИИ ЛИЗИСА ЛЕЙКОЦИТОВ И ОБЩЕГО ИММУНОГЛОБУЛИНА Е

Е.В. ДУДЕНКО, С. СЫДЫКОВА

Лаборатория иммунологии и молекулярной биологии, Национальный центр фтизиатрии, Бишкек, Кыргызская Республика

Цель: выявление наличия лекарственной аллергии (ЛА) на противотуберкулёзные препараты на основе изучения иммунных механизмов данной патологии при туберкулёзе.

Материал и методы: выполнено выявление первого и четвёртого типов ЛА на противотуберкулёзные препараты у 163 больных туберкулёзом (ТБ). Туберкулёз лёгких (ТБЛ) диагностирован у 109 (66,9%) больных, из их числа у 43 (39,4%) выявлена множественная лекарственная устойчивость (МЛУ) микобактерий туберкулёза и у 66 (60,6%) — лекарственная чувствительность (ЛЧ). Внелёгочный туберкулёза (ВЛТ) выявлен у 54 (33,1%) из 163 обследованных пациентов. Использовалась реакция сенсибилизации лизиса лейкоцитов (РСЛЛ) и количественное определение концентрации общего иммуноглобулина класса E (IgE) методом твёрдофазного иммуноферментного анализа (ИФА). Материалом исследования служили пробы периферической крови.

Результаты: положительная РСЛЛ+ по одному или более препаратам выявлена у 103 (63,2%) из 163 обследованных на ЛА больных ТБ, слабоположительная РСЛЛ± по одному или более препаратам – у 43 (26,4%) и отрицательная РСЛЛ- по всем исследованным препаратам – у 17 (10,4%) больных ТБ. Самое высокое относительное количество РСЛЛ+ показало обследование на ЛА больных МЛУ ТБЛ (30 из 43 пациентов, или 69,8%). Наибольшее относительное количество сомнительных (или слабоположительных) результатов РСЛЛ± выявлено у больных ВЛТ (17 из 54 пациентов, или 31,5%). Самое высокое относительное количество отрицательных результатов РСЛЛ - показало обследование на ЛА больных ЛЧ ТБЛ (9 из 66, или 13,6%). У больных ЛЧ ТБЛ и МЛУ ТБЛ уровень общего IgE составлял 140,6±52,3 и 147,0±70,1 МЕ/мл соответственно. Наиболее высокий уровень IgE (172,0±68,1 МЕ/мл) выявлен у больных ВЛТ.

Заключение: реакция лейкоцитов на инкубацию с противотуберкулёзными препаратами (четвёртый тип ЛА) выявлена у 146 (89,6%) больных ТБ из 163 обследованных (РСЛЛ+ и РСЛЛ±), а отсутствие данной реакции лейкоцитов по всем исследованным препаратам – у 17 (10,4%) больных ТБ из 163 обследованных с подозрением на ЛА (РСЛЛ-). Наиболее высокий уровень IgE (172,0±68,1 МЕ/мл) выявлен у больных ВЛТ. Ключевые слова: туберкулёз, лекарственная аллергия, противотуберкулёзные препараты, лейкоциты.

Для цитирования: Дуденко ЕВ, Сыдыкова С. Выявление лекарственной аллергии на противотуберкулёзные препараты с использованием реакции сенсибилизации лизиса лейкоцитов и общего иммуноглобулина Е. *Вестник Авиценны.* 2018;20(2-3):207-211. Available from: http://dx.doi.org/10.25005/2074-0581-2018-20-2-3-207-211.

DETECTION OF DRUG ALLERGY ON ANTITUBERCULOSIS DRUGS USING LEUKOCYTES LYSIS SENSIBILIZATION REACTION AND TOTAL IMMUNOGLOBULIN E

E.V. DUDENKO, S. SYDYKOVA

Laboratory of Immunology and Molecular Biology, National Center for Phthisiology, Bishkek, Kyrgyz Republic

Objective: Detecting the presence of drug allergy (DA) for anti-TB preparations on the basis of the studying of the immune mechanisms of DA in tuberculosis.

Methods: Performed identification of the first and fourth types of DA for anti-tuberculosis drugs in 163 tuberculosis (TB) patients. Tuberculosis of the lungs (TBL) was diagnosed in 109 (66.9%) patients, of which 43 (39.4%) had multiple drug resistance (MDR) of Mycobacterium tuberculosis and 66 (60.6%) – drug sensitivity (DS). Extrapulmonary tuberculosis (EPLT) was detected in 54 (33.1%) of the 163 patients examined. We used a leukocyte lysis sensibilization reaction (LLSR) and quantified the concentration of total immunoglobulin of E class (IgE) by immunoferment analysis (IFA). The material of the study served as the samples of peripheral blood.

Results: Positive LLSR+ for one or more drugs was detected in 103 (63.2%) of the 163 patients with TB, weakly positive LLSR± in one or more drugs – in 43 (26.4%) and negative LLSR- for all studied drugs – in 17 (10.4%) patients with TB. The highest relative number of LLSR+ showed an examination in DA of MDR TBL patients (30 of 43 patients, or 69.8%). The greatest relative number of questionable (or weakly positive) results of LLSR was found in patients with EPLT (17 of 54 patients, or 31.5%). The highest relative number of negative results of the LLSR- was for the time being the examination in DA of patients with DS TBL (9 of 66, or 13.6%). In patients with DS and MDR TBL, the total IgE level was 140.6±52.3 and 147.0±70.1 IU/ml, respectively. The highest level of IgE (172.0±68.1 IU/ml) was detected in patients with EPLT.

Conclusions: Leukocytes reactions to incubation with anti-tuberculosis drugs (the fourth type of DA) was detected in 146 (89.6%) of patients with TB from 163 patients (LLSR+ and LLSR+), and the absence of this leukocyte reaction for all the drugs studied – in 17 (10.4%) of patients with TB from 163 surveyed with suspicion of DA (LLSR-). The highest level of IgE (172.0±68.1 IU/ml) was detected in patients with EPLT.

Keywords: Tuberculosis, drug allergy, anti-tuberculosis drugs, leukocytes.

For citation: Dudenko EV, Sydykova S. Vyyavlenie lekarstvennoy allergii na protivotuberkulyoznye preparaty s ispol'zovaniem reaktsii sensibilizatsii lizisa leykotsitov i obshchego immunoglobulina E [Detection of drug allergy on antituberculosis drugs using leukocytes lysis sensibilization reaction and total immunoglobulin E]. Vestnik Avitsenny [Avicenna Bulletin]. 2018;20(2-3):207-211. Available from: http://dx.doi.org/10.25005/2074-0581-2018-20-2-3-207-211.

Введение

Лекарственная аллергия (ЛА) — это нежелательная лекарственная реакция, развивающаяся по иммунным механизмам в результате гиперчувствительности пациента к лекарственным средствам [1, 2]. Развитию ЛА предшествует период сенсибилизации, когда происходит первичный контакт иммунной системы организма и лекарства. При сенсибилизации образуются антитела и иммунные Т-лимфоциты. Аллергия — это специфическая повышенная вторичная иммунная реакция на аллерген, который взаимодействует с образовавшимися антителами или иммунными Т-лимфоцитами [3]. Реакция иммунной системы больного на препарат связана с индивидуальными особенностями его иммунологической реактивности. В клинике наиболее часто встречаются I и IV типы лекарственной гиперчувствительности [4].

Аллергические реакции немедленного типа относятся к I типу, который является наиболее распространённым видом аллергических реакций [5]. В этих случаях происходит стимуляция секреции IgE. Туберкулёз является инфекционно-аллергическим заболеванием, и в его развитии участвует преимущественно IV тип (клеточно-опосредованные реакции) или гиперчувствительность замедленного типа. В этих реакциях главную роль играют Т-лимфоциты [6, 7]. В развитии ЛА также имеет значение участие антител, полиморфно-ядерных лейкоцитов (гранулоцитов) и макрофагов [8].

Каждый лекарственный препарат метаболизируется в организме. Метаболит соединяется с белками крови и становится аллергеном. Это объясняет трудности выявления ЛА, так как пробы проводятся с лекарственным препаратом, а ЛА могут вызвать различные метаболиты лекарственных средств [9].

Лабораторные методы диагностики ЛА in vitro имеют следующие основные преимущества: безопасность для больного, отсутствие противопоказаний, возможность проведения исследований при повышенной степени сенсибилизации, выявление реакции на несколько препаратов за одно исследование, тестирование можно проводить на фоне терапии [10].

При туберкулёзе недостаточно изучен иммунитет. Лекарственная аллергия и иммунные механизмы ЛА при туберкулёзе являются актуальной проблемой современной науки [11, 12]. Следует отметить, что какого-либо одного диагностического теста недостаточно для обследования пациентов с ЛА. Достоверность лабораторных методов диагностики ЛА варьирует в пределах 60-85% в зависимости от препарата и типа гиперчувствительности, поэтому диагностические методики постоянно совершенствуются и разрабатываются новые [13]. В настоящее время не существует методов лабораторной аллергодиагностики, выявляющих и учитывающих все типы реакций на все антигены. В связи с этим, стоит задача разработки новых и совершенствования имеющихся методов аллергодиагностики [14].

ЦЕЛЬ ИССЛЕДОВАНИЯ

Выявление наличия лекарственной аллергии на противотуберкулёзные препараты на основе изучения иммунных механизмов данной патологии при туберкулёзе.

Материал и методы

Объект исследования — 163 больных разными формами туберкулёза. Туберкулёз легких (ТБЛ) диагностирован у 109 (66,9%) больных, из их числа у 43 (39,4%) — множественная лекарственная устойчивость микобактерий туберкулёза МЛУ МБТ и у 66 (60,6%) — лекарственная чувствительность ЛЧ МБТ. Внелёгочный туберкулёз (ВЛТ) выявлен у 54 (33,1%) из 163 обследованных пациентов.

Материалом исследования служили пробы периферической крови данных больных. Дизайн работы — проспективное исследование. Использован лабораторный метод определения IV или клеточно-опосредованного типа лекарственной аллергии: РСЛЛ (реакция сенсибилизации лизиса лейкоцитов). Выполнена адаптация метода для выявления ЛА к противотуберкулёзным препаратам. Проводилась *in vitro* инкубация периферической крови больных ТБ с 9-ю противотуберкулёзными препаратами I (изониазид, рифампицин, пиразинамид, этамбутол) и II рядов (левокс, циклосерин, протионамид, каприомицин, пазер).

Результаты исследования методом РСЛЛ разделены на три группы:

- Отрицательные (РСЛЛ-) от 0% до 10% лейкоцитов элиминированы в процессе инкубации крови с противотуберкулёзным препаратом.
- Сомнительные или слабоположительные (РСЛЛ±) или «серая зона» – более 10%, но менее 20% лейкоцитов элиминированы в процессе инкубации крови с противотуберкулёзным препаратом.
- Положительные (РСЛЛ+) от 20% и более лейкоцитов элиминированы в процессе инкубации крови с противотуберкулёзным препаратом.

В сыворотке крови данных больных для выявления I типа ЛА проведено количественное определение концентрации общего иммуноглобулина класса Е методом твёрдофазного иммуноферментного анализа (ИФА).

Статистическую обработку результатов исследования проводили с использованием электронных таблиц Excel-5.0 и статистической программы Statistica 6.0 (StatSoft Inc., США). Исследуемые величины представлены в виде среднее арифметическое±стандартное отклонение (М±s), для относительных величин вычислялись доли (%). Для проверки значимости различия двух и более воздействий на группы (при условии дихотомической переменной) применялся Q критерий Кохрена.

Таблица 1 Результаты РСЛЛ на противотуберкулёзные препараты по клиническим формам

Клинические формы	PC	РСЛЛ+		РСЛЛ±		РСЛЛ-	
	n	%	n	%	n	%	
ТБЛ n=66	42	63,6	15	22,7	9	13,6	
МЛУ n=43	30	69,8	11	25,6	3	7,0	
ВЛТ n=54	31	57,4	17	31,5	5	9,3	
Bcero n=163	103	63,2	43	26,4	17	10,4	

Примечание: п – количество обследованных больных туберкулёзом

Таблица 2 Результаты РСЛЛ на противотуберкулёзные препараты первого ряда

Препарат	РСЛЛ+		РСЛЛ±		РСЛЛ-	
Препара	n	%	n	%	n	%
Изониазид	28	29,8	24	15,1	54	3,2
Рифампицин	22	31,0	25	15,0	51	3,8
Пиразинамид	38	29,4	31	14,5	87	3,4
Этамбутол	28	29,0	23	14,3	64	3,8
р	>	0,05	>0),05	>0	,05
Всего	142	29,5	123	14,8	306	3,5

<u>Примечание</u>: р – статистическая значимость различия показателей сенсибилизирующего действия противотуберкулёзных препаратов первого ряда (Q критерий Кохрена)

Результаты и их обсуждение

В течение 2016-2017 годов обследовано 163 больных разными формами туберкулёза (ТБ). Данные больные находились на стационарном лечении в Национальном центре фтизиатрии при Министерстве здравоохранения Кыргызской Республики.

Как следует из табл. 1, РСЛЛ+ по одному или более препаратам выявлена у 103 (63,2%) из 163 обследованных на ЛА больных ТБ, РСЛЛ± по одному или более препаратам – у 43 (26,4%) и РСЛЛ- по всем исследованным препаратам – у 17 (10,4%) больных ТБ. Самое высокое относительное количество РСЛЛ+ показало обследование на ЛА больных МЛУ ТБ (30 из 43 пациентов или 69,8%). Наибольшее относительное количество сомнительных (или слабоположительных) результатов РСЛЛ± выявлено у больных ВЛТ (17 из 54 пациентов или 31,5%). Самое высокое относительное количество отрицательных результатов РСЛЛ- показало обследование на ЛА больных ТБЛ (9 из 66 или 13,6%).

По результатам РСЛЛ, представленным в табл. 2, различия сенсибилизирующего действия противотуберкулёзных препаратов первого ряда статистически не значимы (p>0,05). В относительном выражении самый высокий результат РСЛЛ отмечен при изучении лизиса лейкоцитов под воздействием рифампицина и изониазида из числа препаратов первого ряда (31,0%, 29,8% РСЛЛ+).

По результатам РСЛЛ, представленным в табл. 3, различия сенсибилизирующего действия противотуберкулёзных препаратов второго ряда статистически не значимы (p>0,05). Из числа препаратов второго ряда в относительном выражении самый высокий результат получен при изучении лизиса лейкоцитов под воздействием левокса и циклосерина (29,5%, 29,3% соответственно).

В рамках выполненной работы проводилось количественное определение уровня общего IgE в сыворотке крови данных больных туберкулёзом (табл. 4).

Таблица 3 Результаты РСЛЛ на противотуберкулёзные препараты второго ряда

Препарат	РСЛЛ+		РСЛЛ±		РСЛЛ-	
	n	%	n	%	n	%
Левокс	17	29,5	15	15,6	34	3,8
Циклосерин	17	29,3	15	15,8	31	3,0
Протионамид	16	28,8	15	14,2	35	3,5
Каприомицин	10	28,3	12	15,9	39	3,3
Пазер	15	29,0	10	13,8	30	4,0
р	>0,05		>0,05		>0,05	
Всего	75	29,0	67	15,1	169	3,5

<u>Примечание</u>: р – статистическая значимость различия показателей сенсибилизирующего действия противотуберкулёзных препаратов второго ряда (Q критерий Кохрена)

Таблица 4 Результаты исследований содержания общего IgE

Клинические формы	PC	lgE, ME/мл	
	n	%	M±s
ТБЛ (n=66)	42	63,6	140,6±52,3
МЛУ (n=43)	30	69,8	147,0±70,1
ВЛТ (n=54)	31	57,4	172,0±68,1
Bcero (n=163)	103	63,2	153,3±36,1

Примечание: п - количество обследованных больных туберкулёзом

Как следует из таблицы 4, самый высокий уровень IgE (172,0 \pm 68,1 МЕ/мл) выявлен у больных ВЛТ. У больных ЛЧ ТБЛ и МЛУ ТБЛ уровень общего IgE составлял 140,6 \pm 52,3 и 147,0 \pm 70,1 МЕ/мл соответственно.

Для выявления IV (клеточно-опосредованного) типа лекарственной аллергии выполнено обследование 163 больных разными формами ТБ с подозрением на наличие лекарственной аллергии, использован метод РСЛЛ с инкубацией лейкоцитов крови данных больных с 9-ю противотуберкулёзными препаратами. Положительный результат РСЛЛ+ по одному или более препаратам выявлен у 103 (63,2%) из 163 обследованных на ЛА больных ТБ. Согласно литературным источникам, достоверность

лабораторных методов диагностики ЛА *in vitro* составляет 60-70% [15] или 60-85% [13]. Следовательно, результаты данного исследования по РСЛЛ+ соответствуют литературным источникам.

ЗАКЛЮЧЕНИЕ

Реакция лейкоцитов на инкубацию с противотуберкулёзными препаратами выявлена у 146 (89,6%) больных из 163 обследованных (РСЛЛ \pm), а отсутствие данной реакции по всем исследованным препаратам — у 17 (10,4%) больных ТБ. Самый высокий уровень IgE (172,0 \pm 68,1 МЕ/мл) выявлен у больных ВЛТ.

ЛИТЕРАТУРА

- Mirakian R, Ewan PW. BSACI guidelines for management of drug allergy. Clinical Experimental Allergy. 2008;39(1):43-61.
- Елисеева ТИ, Балаболкин ИИ. Аллергические реакции на лекарственные средства: современные представления (обзор). Современные технологии в медицине. 2016;8(1):159-71.
- Тюкавкина СЮ, Харсеева ГГ. Реакции гиперчувствительности: механизмы развития, клинические проявления, принципы диагностики (лекция). Клиническая лабораторная диагностика. 2014;5:27-36.
- 4. Rive CM, Bourke J, Phillips EJ. Testing for drug hypersensitivity syndromes. *Clinical Biochemistry Review.* 2013;34:15-38.
- Маслова Л. Диагностика и лечение аллергических реакций. Наука и инновации [Электронный ресурс]. 2014 [дата доступа: 2018 июль 9]; (6). Режим доступа: http://innosfera.org/2014/06/aMegric.
- Новиков ПД, Новиков ДК, Титова НД. Диагностика аллергии и гиперчувствительности: ведущее значение клеточных методов. Иммунопатология, аллергология, инфектология. 2016;4:25-9.
- Palomares O, Martin-Fontecha, Lauener MR. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes and Immunity. 2014;15:511-20. Available from: http://www.nature.com/gene/journal/v15/n8/full/gene 201445a.html.
- Демко ИВ. Лекарственная аллергия. Сибирское медицинское обозрение. 2013;4:83-7.
- Шабыкеева СБ, Алтымышева АТ, Калюжный СИ, Токтогулова НА, Сооронбаев ТМ. Лекарственная аллергия. Вестник КРСУ. 2014;14(12):126-9.
- 10. Пухлик БМ, Победенная ГП, Матвеева ЕВ. Лекарственная аллергия как проявление побочной реакции на лекарственные средства: современное состояние проблемы. *Клиническая иммунология*. *Аллергология*. *Инфектология*. 2012;9:54-9.
- Cliff JM, Kaufmann SH, McShane. The human immune response to tuberculosis and its treatment: a view from the blood. *Immunological Reviews*. 2015;264(1):88-102. Available from: www.onlinelibrary.wiley.com/doi/10.1111/imr.12269/full.
- Thong B, Chia F, Tan S. A retrospective study on sequential desensitizationrechallenge for antituberculosis drug allergy. Asia Pacific Allergy. 2014;4(3):156-63. Available from: www.ncbi.nlm.nih.gov/pmc/articles/ PMC4116042.
- 13. Дрынов ГИ, Ушакова ДВ, Сластушенская ИЕ. Место современной лабораторной диагностики в практической аллергологии. *Лабораторная служба*. 2014;2:42-7.
- Карпук ИЮ. Диагностика аллергии на местные анестетики в реакции антигениндуцированного повреждения лейкоцитов. Вестник ВГМУ. 2010;9(1):1-8.
- 15. Хаитов РМ, Ильина НИ. (ред.) *Аллергология и иммунология: национальное руководство.* Москва, РФ: ГЭОТАР-Медиа; 2009: 656 с.

REFERENCES

- Mirakian R, Ewan PW. BSACI guidelines for management of drug allergy. Clinical Experimental Allergy. 2008;39(1):43-61.
- Eliseeva TI, Balabolkin II. Allergicheskie reaktsii na lekarstvennye sredstva: sovremennye predstavleniya [Drug allergic reactions: current views (review)].
 Sovremennye tekhnologii v meditsine. 2016;8(1):159-71.
- Tyukavkina SYu, Khurseeva GG. Reaktsii giperchuvstvitel'nosti: mekhanizmy razvitiya, klinicheskie proyavleniya, printsipy diagnostiki (lektsiya) [Hypersensitivity reactions: development mechanisms, clinical manifestations, principles of diagnosis (lecture)]. Klinicheskaya laboratornaya diagnostika. 2014;5:27-36.
- 4. Rive CM, Bourke J, Phillips EJ. Testing for drug hypersensitivity syndromes. Clinical Biochemistry Review. 2013;34:15-38.
- Maslova L. Diagnostika i lechenie allergicheskikh reaktsiy [Diagnosis and treatment of allergic reactions]. Nauka i innovatsii [Online resource]. 2014 [access date: 2018 July 9]: access mode: http://innosfera.org/2014/06/ aMegric.
- Novikov PD, Novikov DK, Titova ND. Diagnostika allergii i giperchuvstvitel'nosti: vedushchee znachenie kletochnykh metodov [Diagnosis of the allergy and hypersensitivity: leading value of cell-like methods]. *Immunopatologiya,* allergologiya, infektologiya. 2016;4:25-9.
- Palomares O, Martin-Fontecha, Lauener MR. Regulatory T cells and immune regulation of allergic diseases: roles of IL-10 and TGF-β. Genes and Immunity. 2014;15:511-20. Available from: http://www.nature.com/gene/journal/v15/n8/full/gene 201445a.html.
- Demko IV. Lekarstvennaya allergiya [Drug allergy]. Sibirskoe meditsinskoe obozrenie. 2013;4:83-7.
- Shabikeeva SB, Altymysheva AT, Kalyuzhnyy SI, Toktogulova NA, Sooronbaev TM. Lekarstvennaya allergiya [Drug allergy]. Vestnik KRSU. 2014;14(12):126-9.
- Pukhlik BM, Pobedennaya GP, Matveeva EV. Lekarstvennaya allergiya kak proyavlene pobochnoy reaktsii na lekarstvennye sredstva: sovremennoe sostoyanie problemy [Drug allergy as a manifestation of an adverse reaction to drugs: current state of the problem]. Klinicheskaya immunologiya. Allergologiya. Infektologiya. 2012;9:54-9.
- Cliff JM, Kaufmann SH, McShane. The human immune response to tuberculosis and its treatment: a view from the blood. *Immunological Reviews*. 2015;264(1):88-102. Available from: www.onlinelibrary.wiley.com/doi/10.1111/imr.12269/full.
- Thong B, Chia F, Tan S. A retrospective study on sequential desensitizationrechallenge for antituberculosis drug allergy. Asia Pacific Allergy. 2014;4(3):156-63. Available from: www.ncbi.nlm.nih.gov/pmc/articles/ PMC4116042.
- Drynov GI, Ushakova DV, Slastushenskaya IE. Mesto sovremennoy laboratornoy diagnostiki v prakticheskoy allergologii [Place of modern laboratory diagnostics in practical allergology]. Laboratornaya sluzhba. 2014:2:42-7
- Karpuk IU. Diagnostika allergii na mestnye anestetiki v reaktsii antigenindutsirovannogo povrezhdeniya leykotsitov [Diagnosis of allergy to local anesthetics in the response of antigen-induced leukocytes damage]. Vestnik VGMU. 2010;9(1):1-8.
- Khaitov RM, Ilyina NI. (red.) Allergologiya i immunologiya: Natsional'noe rukovodstvo [Allergology and Immunology: National guideline]. Moscow, RF: GEOTAR-Media; 2009: 656 p.

🚺 СВЕДЕНИЯ ОБ АВТОРАХ

Дуденко Елена Вячеславовна, научный сотрудник лаборатории иммунологии и молекулярной биологии Национального центра фтизиатрии

Сыдыкова Салтанат, научный сотрудник лаборатории иммунологии и молекулярной биологии Национального центра фтизиатрии

Информация об источнике поддержки в виде грантов, оборудования, лекарственных препаратов

Работа выполнялась в соответствии с планом НИР Национального центра фтизиатрии. Финансовой поддержки со стороны компаний-производителей лекарственных препаратов и медицинского оборудования авторы не получали.

Конфликт интересов: отсутствует.

(i) AUTHOR INFORMATION

Dudenko Elena Vyacheslavovna, Researcher, Laboratory of Immunology and Molecular Biology, National Center for Phthisiology

Sydykova Saltanat, Researcher, Laboratory of Immunology and Molecular Biology, National Center for Phthisiology

АДРЕС ДЛЯ КОРРЕСПОНДЕНЦИИ:

Дуденко Елена Вячеславовна

научный сотрудник лаборатории иммунологии и молекулярной биологии Национального центра фтизиатрии

720020, Кыргызская Республика г. Бишкек, ул. Ахунбаева, д. 90а

Тел.: (+996) 554 044011 E-mail: dudenko.e@list.ru

ВКЛАД АВТОРОВ

Разработка концепции и дизайна исследования: ДЕВ Сбор материала: ДЕВ, СС Статистическая обработка данных: СС Анализ полученных данных: ДЕВ, СС Подготовка текста: ДЕВ, СС Редактирование: ДЕВ, СС Общая ответственность: ДЕВ

Поступила 16.06.2018 Принята в печать 21.08.2018

ADDRESS FOR CORRESPONDENCE:

Dudenko Elena Vyacheslavovna

Researcher of the Laboratory of Immunology and Molecular Biology, National Center for Phthisiology

720020, Kyrgyz Republic, Bishkek city, Akhunbaev str., 90a

Tel.: (+996) 554 044011 E-mail: dudenko.e@list.ru

> Submitted 16.06.2018 21.08.2018 Accepted