Literature Reviews

doi: 10.25005/2074-0581-2018-20-2-3-176-180

J.Z. Irgasheva1, A.K. Baratov2, M. Mirshahi3,4

1Department of Human Physiology, Avicenna Tajik State Medical University, Dushanbe, Republic of Tajikistan
2Republican Scientific Center for Cardiovascular Surgery, Dushanbe, Republic of Tajikistan
3Paris Sorbonne Cité University, Lariboisière Hospital, UMR Paris-7 and INSERLM U965, Paris, France
4Department of Pharmaceutical Innovation and Experimental Medicine (DPIEM), Tajikistan Academy of Sciences, Dushanbe, Republic of Tajikistan

Objective: Stem cells have remarkable potential to grow in more than 200 types of cells that the adult human body holds. Regenerative medicine by using stem cells is at the vanguard of health care poised to offer solutions for many of today's incurable diseases. Bone marrow derived stem cells have been used in vitro to generate bone, cartilage, tendon, ligament, meniscus, intervertebral disc, fat, muscle, and nerve. The aim of this review is to describe the stem cell therapy in Tajikistan and its position in the word. In Tajikistan for the first time the laboratory for investigation of stem cell created in Avicenna Tajik State Medical University, Dushanbe at November 29, 2009 and the first clinical study for heart stem cell therapy started at March 9, 2010. In this study, autologous transplantation of bone marrow derived CD133+ was undertaken with the high degree of success for a cohort of patients with coronary artery disease.

Keywords: Regenerative medicine, human stem cells, cardiac revitalization, coronary artery disease, bone marrow derived CD133+.

Download file:

  2. Keller R. Stem cells on the way to restorative medicine. Immunol Lett. 2002;83(1):1-12.
  3. Alexander MS, Casar JC, Motohashi N. Stem cell differentiation and therapeutic use. Stem Cells International. 2015; Article ID 308128. Available from:
  4. Zhang Y, Mignone J, MacLellan WR. Cardiac regeneration and stem cells. Physiol Rev. 2015;95(4):1189-204. Available from:
  5. Shen H, Wang Y, Zhang Z, Yang J, Hu Sh, Shen Z. Mesenchymal stem cells for cardiac regenerative therapy: optimization of cell differentiation strategy. Stem Cells International. 2015; Article ID 524756. Available from:
  6. Sabapathy V, Tharion G, Kumar S. Cell therapy augments functional recovery subsequent to spinal cord injury under experimental conditions. Stem Cells International. 2015; Article ID 132172.
  7. Cai CL, Molkentin JD. The elusive progenitor cell in cardiac regeneration: slip slidin' away. Circ Res. 2017;120(2):400-6. Available from:
  8. Menendez P, Bueno C, Wang Lg, Bhatia M. Human embryonic stem cells potential tool for achieving immunotolerance? Stem Cell Reviews. 2005;1:151-8.
  9. Moraleda JM, Blanguer M, Bleda P, Iniesta P, Ruiz F, Bonilla S, et al. Adult stem cell therapy: dream or reality? Transpl Immunol. 2006;17:74-7.
  10. Konstantinov IE. In search of Alexander A. Maximow: The man behind the unitarian theory of hematopoiesis. Perspect Biol Med. 2000;43:267-9.
  11. Trounson A, McDonald C. Stem cell therapies in clinical trials: progress and challenges. Stem Cells. 2015;17(1):11-22.
  12. French AJ, Adams CA, Anderson LS, Kitchen JR, Hughes MR, Wood SH. Development of human cloned blastocysts following somatic cell nuclear transfer with adult fibroblasts. Stem Cells. 2008;26:485-93.
  13. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143-7.
  14. Muschler GF, Nakamoto C, Griffith LG. Engineering principles of clinical cellbased tissue engineering. J Bone Joint Surg Am. 2004;86:1541-58.
  15. Zuk PA, Zhu M, Mizuno H. Multilineage cells from human adipose tissue: Implications for cellbased therapies. Tissue Eng. 2001;7:211-28.
  16. Ren H, Sang Y, Zhang F, Liu Zh, Qi N, Chen Y. Comparative analysis of human mesenchymal stem cells from umbilical cord, dental pulp, and menstrual blood as sources for cell therapy. Stem Cells International. 2016; Article ID 3516574.
  17. Sanberg PR, Eve DJ, Willing AE. The treatment of neurodegenerative disorders using umbilical cord blood and menstrual blood-derived stem cells. Cell Transplantation. 2011;20(1):85-94.
  18. Sakai K, Yamamoto A, Matsubara K. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms. Journal of Clinical Investigation. 2012;122(1):80-90.
  19. Liu Y, Mu R, Wang S. Therapeutic potential of human umbilical cord mesenchymal stem cells in the treatment of rheumatoid arthritis. Arthritis Research & Therapy. 2010;12(6):article R210.
  20. Vu NB, Ngoc-Le Trinh V, Phi LK, Phan N, Van Pham P. Human menstrual bloodderived stem cell transplantation for acute hind limb ischemia treatment in mouse models. Regenerative Medicine. 2015;1:205-15.
  21. Hu J, Yu X, Wang Z. Long term effects of the implantation of Wharton's jellyderived mesenchymal stem cells from the umbilical cord for newly-onset type 1 diabetes mellitus. Endocrine Journal. 2013;60(3):347-57.
  22. Beltrami AP, Urbanek K, Kajstura J, Yan S M, Finato N. Evidence that Human cardiac myocytes divide after myocardial infarction. N Engl J Med. 2001;344:1750-7.
  23. Bing RJ, (1971) Reparative processes in heart muscle following myocardial infarction. Cardiology 56: 314-324.
  24. Murry CE, Soonpaa MH, Reinecke H. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature. 2004;428:664-8.
  25. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK. A randomized, doubleblind, placebo- controlled, dose- escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. JACC. 2009;54:2277-86.
  26. Kurbonov U, Dustov A, Barotov A, Khidirov M, Mirojov G, Rahimov Z, et al. Intracoronary infusion of autologous CD133+ cells in myocardial infarction and tracing by Tc99m MIBI scintigraphy of the heart areas involved in cell homing. Stem Cells International. 2013; Article ID 582527. Available from:
  27. Parker GC. Very small embryonic-like stem cells: a scientific debate? Stem Cells Dev. 2014;23(7):687-8. Available from:
  28. Bolli R, Chugh AR, D'Amario D, Loughran JH, Stoddard MF. Cardiac stem cells in patients with ischaemic cardiomyopathy (scipio): Initial results of a randomized phase 1 trial. Lancet. 2011;378:1847-57.
  29. Beltrami AP, Barlucchi L, Torella D. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003;114:763-76.
  30. Nadal-Ginard B, Kajstura J, Leri A, Anversa P. Myocyte death, growth and regeneration in cardiac hypertrophy and failure. Circ Res. 2003;92:139-50.
  31. Torella D, Ellison GM, Karakikes I, Nadal-Ginard B. Cardiovascular development: towards biomedical applicability: Resident cardiac stem cells. Cellular Molecular Life Science. 2007;64:661-73.
  32. Ellison GM, Torella D, Dellegrottaglie S, Perez-Martinez C, Perez de Prado A, Vicinanza C, et al. Endogenous cardiac stem cell activation by insulin-like growth factor-1/hepatocyte growth factor intracoronary injection fosters survival and regeneration of the infarcted pig heart. JACC. 2011;58(9):977-86.
  33. Wagers AJ, Conboy IM. Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adultmyogenesis. Cell. 2005;122(5):659-67.
  34. Shi X, Garry DJ. Muscle stem cells in development, regeneration, and disease. Genes and Development. 2006;20(13):1692-708.
  35. Leri A, Kajstura J, Anversa P. Role of cardiac stem cells in cardiac pathophysiology: a paradigm shift in human myocardial biology. Circulation Research. 2011;109(8):941-61.
  36. Abdel-Latif A, Bolli R, Tleyjehet IM. Adult bone marrow derived cells for cardiac repair: a systematic review and meta analysis. Archives of Internal Medicine. 2007;167(10):989-97.
  37. Hoover-Plowand J, Gong Y. Challenges for heart disease stem cell therapy. Journal of Vascular Health and Risk Management. 2012;8:99-113.
  38. Segers VF, Lee RT. Stem-cell therapy for cardiac disease. Nature. 2008;451(7181):937-42.
  39. Lunde K, Solheim S, Aakhus S, Arnesen H, Abdelnoor M, Egeland T, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med. 2006;355(12):1199-209.
  40. Kang HJ, Kim HS, Zhang SY, Park KW, Cho HJ. Effects of intracoronary infusion of peripheral blood stem-cells mobilized with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: The magic cell randomized clinical trial. Lancet. 2004;363:751-6.
  41. Kucia M, Dawn B, Hunt G, Guo Y, Wysoczynski M. Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circ Res. 2004;95:1191-9.
  42. Stamm C, Westphal B, Kleine HD, Petzsch M, Kittner C. Autologous bonemarrow stem-cell transplantation for myocardial regeneration. Lancet. 2003;361:45-6.
  43. Martino H, Brofman P, Greco O, Bueno R, Bodanese L, Clausell N, et al. Dilated cardiomyopathy arm of the MiHeart Study Investigators. Multicentre, randomized, double-blind trial of intracoronary autologous mononuclearbone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). Eur Heart J. 2015;36(42):2898-904. Available from:
  44. Perin EC, Willerson JT, Pepine CJ, Henry TD, Ellis SG, Zhao DX, et al. Cardiovascular Cell Therapy Research Network (CCTRN). Effect of transendocardial delivery of autologous bone marrow mononuclear cells on functional capacity, left ventricular function, and perfusion in chronic heart failure. JAMA. 2012;307(16):1717-26. Available from:
  45. Sürder D, Manka R, Lo Cicero V, Moccetti T, Rufibach K, Soncin S, et al. Intracoronary injection of bone marrow-derived mononuclear cells early or late after acute myocardial infarction: effects on global left ventricular function. Circulation. 2013;127(19):1968-79. Available from:
  46. Bartunek J, Vanderheyden M, Vandekerckhove B, Mansour S, De Bruyne B, De Bondt P, et al. Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation. 2005;112(9 Suppl):I178-83.
  47. Nasseri BA, Ebell W, Dandel M, Kukucka M, Gebker R, Doltra A, ea al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: the Cardio133 trial. Eur Heart J. 2014;35(19):1263-74. Available from:
  48. Afzal MR, Samanta A, Shah ZI, Jeevanantham V, Abdel-Latif A, Zuba-Surma EK, et al. Adult bone marrow cell therapy for ischemic heart disease: evidence and insights from randomized controlled trials. Circ Res. 2015;117(6):558-75. Available from:
  49. Irgasheva J, Aldybiat I, Shukurov FA, Mirshahi M. Physiological role of bone marrow adult stem cell CD133+. Avicenna Bulletin. 2017;19(2):177-82. Available from:

Authors' information:

Irgasheva Jamila Zokirovna,
Doctorant at the Department of Human Physiology, Avicenna Tajik State Medical University

Baratov Alisher Kenjaevich,
Candidate of Medical Sciences, Associate Professor, Endovascular Surgeon, Republican Scientific Center for Cardiovascular Surgery

Mirshahi Massoud,
Professor, MD, PhD, Paris Sorbonne Cité University, Lariboisière Hospital, UMR Paris-7 and INSERLM U965, Member of Tajikistan Academy of Science

Conflicts of interest: No conflict

Address for correspondence:

Mirshahi Massoud

Professor, MD, PhD University of Sorbonne Paris Cité - Paris 7 Lariboisière Hospital, INSERM U965 41 Bd de la Chapelle

75010, Paris, France

Tel.: (+33) 153 216765

Fax: (+33) 157 216739