Literature Reviews

doi: 10.25005/2074-0581-2020-22-2-301-310
APOPTOSIS ROLE IN FORMING RADIOIODINE RESISTANCE IN DIFFERENTIATED THYROID CANCER

K.A. Garipov1,2, Z.A. Afanasieva1,2, A.D. Gafiullina1,2

1Department of Oncology, Radiology and Palliative Medicine, Kazan State Medical Academy, Kazan, Russian Federation
2Republican Oncological Clinical Dispensary, Kazan, Russian Federation

According to studies, 25-66% of patients with metastatic highly differentiated thyroid cancer (DTC) develop partial or complete resistance of metastases to therapy with radioactive iodine. The review discusses the molecular mechanisms for the involvement of various apoptosis proteins in the formation of radioiodine resistance in patients with DTC, as well as the molecular mechanisms of the action of multikinase inhibitors, with a range of therapeutic effects from complete tumour regression to stabilization, on apoptosis. Considering the literature on the ambiguous role of apoptosis in the formation of radioiodine resistance in DTC, required further examination of its molecular mechanisms, its relationship with such a process as autophagy, the effect of multikinase inhibitors on its molecular basis and on overcoming iodine resistance. Studying the mechanism of apoptosis regulations gives a chance to find new targeted aims exposure in its individual stages in order to regulate or correct them.

Keywords: Differentiated thyroid cancer, radioiodine-resistant thyroid cancer, apoptosis; targeted therapy, multikinase inhibitors.

Download file:


References
  1. Rumyantsev PO, Gorbunova VA, Podvyaznikov SO, Zhukov NV, Isaev PA, Krylov VV, i dr. Sovremennye vozmozhnosti lecheniya differentsirovannogo raka shchitovidnoy zhelezy, rezistentnogo k terapii radioaktivnym yodom: rezolyutsiya po itogam Ekspertnogo soveta [Modern therapy of radioactive iodine-refractory differentiated thyroid cancer: resolution of the Expert Council]. Sovremennaya onkologiya. 2016;18(3):48-51.
  2. Nersesyan K, Robinson D, Wolfe G, Flores N, Pelletier C, Forsythe A. Epidemiology and treatment of radioactive iodine-refractory differentiated thyroid cancer in the Еu 5. Value in Health. 2015;18(3):A194. Available from: https:// doi.org/10.1016/j.jval.2015.03.1123 
  3. Schlumberger M, Brose M, Elisei R, Leboulleux S, Luster M, Pitoia F, et al. Definition and management of radioactive iodine-refractory differentiated thyroid cancer. The Lancet Diabetes & Endocrinology. 2014;2(5):356-8. Available from: https://doi.org/10.1016/S2213-8587(13)70215-8
  4. Zhivotovskiy BD. Smert’ radi zhizni, ili terapevticheskiy potentsial «kletochnogo samoubiystva» [Death for life, or the therapeutic potential of «cell suicide»]. Nauka iz pervyh ruk. 2017;73(1):50-7.
  5. Parakhonskiy AP. Vzaimovliyanie autofagii i apoptoza v opukholevykh kletkakh [The interaction of autophagy and apoptosis in tumor cells]. Zametki uchyonogo. 2016;6:54-8.
  6. Kaprin AD, Starinskiy VV, Petrov GV. Sostoyanie onkologicheskoy pomoshchi naseleniyu Rossii v 2018 godu [The status of cancer care for the population of Russia in 2018]. Moscow, RF: MNIOI im. P.A. Gertsena; 2019. 14 p.
  7. Laursen R, Wehland M, Kopp S, Pietsch J, Infanger M, Grosse J, et al. Effects and role of multikinase inhibitors in thyroid cancer. Curr Pharm Des. 2016;22(39):5915-26. Available from: https://doi.org/10.2174/1381612822 666160614084943
  8. Nechaeva OA, Bavykina LG, Dreval AV. Differentsirovannyy rak shchitovidnoy zhelezy: sovremennye podkhody k diagnostike, terapii i dinamicheskomu nablyudeniyu [Differentiated thyroid cancer: modern approaches to diagnosis, therapy and dynamic monitoring]. Russkiy meditsinskiy zhurnal. 2016;1;9-12.
  9. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. American Thyroid Association Management Guidelines for adult patients with thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1-133. Available from: https://doi.org/10.1089/thy.2015.0020
  10. Lee J, Hwang A, Lee EK. Recent progress of genome study for anaplastic thyroid cancer. Genomics Inform. 2013;11(2):68-75. Available from: https://doi. org/10.5808/GI.2013.11.2.68
  11. Mudunov AM, Rumyantsev PO, Podvyaznikov SO, Byakhov MYu, Reshetov IV, Sleptsov IV, i dr. Rezolyutsiya po itogam Ekspertnogo soveta «Sovremennye podkhody k lecheniyu differentsirovannogo raka shchitovidnoy zhelezy, rezistentnogo k terapii radioaktivnym yodom [Resolution on the basis of the Expert Council “Modern approaches to the treatment of differentiated thyroid cancer resistant to radioactive iodine therapy”]. Opukholi golovy i shei. 2015;5(3):59-63.
  12. Park KC, Kim SM, Jeon JY, Kim BW, Kim HK, Chang HJ, et al. Synergistic activity of N-Hydroxy-7-(2-Naphthylthio) heptanomide and sorafenib against cancer stem cells, anaplastic thyroid cancer. Neoplasia. 2017;19(8):145-53. Available from: https://doi.org/10.1016/j.neo.2017.05.006
  13. Kleiman DA, Buitrago D, Crowley MJ, Beninato T, Veach AJ, Zanzonico PB, et al. Thyroid stimulating hormone increases iodine uptake by thyroid cancer cells during BRAF silencing. J Surg Res. 2013;182(1):85-93. Available from: https://doi.org/10.1016/j.jss.2012.08.053
  14. Hou P, Liu D, Shan Y, Hu S, Studeman K, Condouris S, et al. Genetic alterations and their relationship in the phosphate idylinositol 3-kinase/Akt pathway in thyroid cancer. Clin Cancer Res. 2007;13(4):1161-70. Available from: https:// doi.org/10.1158/1078-0432.CCR-06-1125
  15. Bible KC, Ryder M. Evolving molecularly targeted therapies for advanced-stage thyroid cancers. Nat Rev Clin Oncol. 2016;13(7):403-16. Available from: https://doi.org/10.1038/nrclinonc.2016.19
  16. Dvoryashina IA, Velikorodnaya YuI, Pocheptsov AYa, Fyodorova OV. Sovremennyy vzglyad na mekhanizmy i klassifikatsiyu kletochnoy gibeli [A modern view on the mechanisms and classification of cell death]. Vestnik Volgogradskogo gosudarstvennogo meditsinskogo universiteta. 2016;3(59):137-9.
  17. Kumykova ZYu, Adzhieva AKh, Dadova AA, Tlupova TG, Dzhanibekov KKh. K voprosu o targetnoy terapii onkologicheskikh patologiy [To the question of targeted therapy of cancer pathologies]. Uspekhi sovremennoy nauki i obrazovaniya. 2016;1(8):158-64.
  18. Bgatova NP, Konenkov VI, Makarova VV, Borodin YuI, Gavrilova YuS, Lykov AP, i dr. Apoptoz i autofagiya v kletkakh gepatokartsinomy, indutsirovannye razlichnymi formami soley litiya [Apoptosis and autophagy in hepatocarcinoma cells induced by different forms of lithium salts]. Tsitologiya. 2017;59(3):178-84.
  19. Tasdemir E, Galluzzi L, Maiuri MC, Criollo A, Vitale I, Hangen E, et al. Methods for assessing autophagy and autophagic cell death. Methods Mol Biol. 2008;445:29-76. Available from: https://doi.org/10.1007/978-1-59745-157- 4_3
  20. Belushkina NN, Khomyakova TI, Khomyakov YuN. Kletochnaya gibel’ i osobennosti eyo regulyatsii v opukholevykh kletkakh [Cell death and specifics of its regulation in tumour cells]. Rossiyskiy fiziologicheskiy zhurnal im. I.M. Sechenova. 2009;95(10):1093-107.
  21. Sidorova IS, Ryzhova OV, Repin AB. Rol’ apoptoza i kletochnoy proliferatsii v patogeneze gladkomyshechnykh opukholey matki [The role of apoptosis and cell proliferation in the pathogenesis of uterus smooth muscle tumors]. Rossiyskiy mediko-biologicheskiy vestnik im. I.P. Pavlova. 2001;3-4:26-31.
  22. de la Fouchardière C. Targeted treatments of radio-iodine refractory differentiated thyroid cancer. Ann Endocrinol. 2015;76(Suppl.1):34-9. Available from: https://doi.org/10.1016/S0003-4266(16)30012-9
  23. Wagner M, Khoury H, Bennetts L, Berto P, Ehreth J, Badia X, еt al. Appraising the holistic value of Lenvatinib for radio-iodine refractory differentiated thyroid cancer: A multi-country study applying pragmatic MCDA. BMC Cancer. 2017;17(1):272. Available from: https://doi.org/10.1186/s12885-017- 3258-9
  24. Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319-28. Available from: https://doi.org/10.1016/S0140- 6736(14)60421-9
  25. Marseille E, Larson B, Kazi DS, Kahn JG, Rosen S. Thresholds for the cost effectiveness of interventions: alternative approaches. Bull World Health. Organ. 2015;93(2):118-24. Available from: https://doi.org/10.2471/ BLT.14.138206
  26. Lin CI, Whang EE, Lorch JH, Ruan DT. Autophagic activation potentiates the antiproliferative effects of tyrosine kinase inhibitors in medullary thyroid cancer. Surgery. 2012;152(6):1142-9. Available from: https://doi.org/10.1016/j. surg.2012.08.016
  27. Abramov ME, Chichikov EI. Sovremennye vozmozhnosti primeneniya sorafeniba pri solidnykh opukholyakh [Modern possibilities of using sorafenib for solid tumors]. Effektivnaya farmakoterapiya. 2012;37:18-23.
  28. Haddad RI, Lydiatt WM, Ball DW, Busaidy NL, Byrd D, Callender G, et al. Anaplastic thyroid carcinoma, version 2.2015. J Natl Compr Canc Netw. 2015;13(9):1140-50. Available from: https://doi.org/10.6004/ jnccn.2015.0139
  29. Krajewska J, Gawlik T, Jarzab B. Advances in small molecule therapy for treating metastatic thyroid cancer. Expert Opin Pharmacother. 2017;18(11):1049- 60. Available from: https://doi.org/10.1080/14656566.2017.1340939
  30. Schmidt A, Iglesias L, Klain M, Pitoia F, Schlumberger MJ. Radioactive iodine-refractory differentiated thyroid cancer: an uncommon but challenging situation. Arch Endocrinol Metab. 2017;61(1):81-9. Available from: https:// doi.org/10.1590/2359-3997000000245
  31. Broecker-Preuss M, Müller S, Britten M, Worm K, Schmid KW, Mann K, et al. Sorafenib inhibits intracellular signaling pathways and induces cell cycle arrest and cell death in thyroid carcinoma cells irrespective of histological origin or BRAF mutational status. BMC Cancer. 2015:26(15):184. Available from: https://doi.org/10.1186/s12885-015-1186-0
  32. Takahashi H, Nasu K, Minami M, Kojima T, Nishiyama H, Ishiguro T, et al. Organ atrophy induced by sorafenib and sunitinib – quantitative computed tomography (CT) evaluation of the pancreas, thyroid gland and spleen. Pol J Radiol. 2016:81:557-65. Available from: https://doi.org/10.12659/ PJR.898936
  33. Isaev PA, Vasilkov SV, Pimonova IS, Sevryukov FE, Polkin VV, Syomin DYu, i dr. Neoad’yuvantnaya targetnaya terapiya differentsirovannogo raka shchitovidnoy zhelezy (klinicheskoe nablyudenie) [Neoadjuvant target therapy of differentiated thyroid cancer (clinical observation)]. Opukholi golovy i shei. 2017;7(1):86-90.
  34. Benekli M, Yalcin S, Ozkan M, Elkiran ET, Sevinc A, Cabuk D, et al. Efficacy of sorafenib in advanced differentiated and medullary thyroid cancer: experience in a Turkish population. Oncol Targets Ther. 2014;15(8):1-5. Available from: https://doi.org/10.2147/OTT.S70670
  35. Yarchoan M, Ma C, Troxel AB, Stopenski SJ, Tang W, Cohen AB, et al. pAKT expression and response to sorafenib in differentiated thyroid cancer. Horm Cancer. 2016;7(3):188-95. Available from: https://doi.org/10.1007/s12672- 016-0253-6
  36. Ball DW, Sherman SI, Jarzab B, Cabanillas ME, Martins R, Shah MA, et al. Lenvatinib treatment of advanced RAI-refractory differentiated thyroid cancer (DTC): cytokine and angiogenic factor (CAF) profiling in combination with tumor genetic analysis to identify markers associated with response. J Clin Oncol. 2012;30(15 Suppl.):5518.
  37. Ruan M, Liu M, Dong Q, Chen L. Iodide- and glucose-handling gene expression regulated by sorafenib or cabozantinib in papillary thyroid cancer. J Clin Endocrinol Metab. 2015;100(5):1771-9. Available from: https://doi. org/10.1210/jc.2014-3023
  38. Valerio L, Pieruzzi L, Giani C, Agate L, Bottici V, Lorusso L, et al. Targeted therapy in thyroid cancer: state of the art. Clin Oncol. 2017;29(5):316-24. Available from: https://doi.org/10.1016/j.clon.2017.02.009
  39. de Castroneves LA, Negrão MV, de Freitas RM, Papadia C, Lima JV Jr, Fukushima JT, et al. Sorafenib for the treatment of progressive metastatic medullary thyroid cancer: efficacy and safety analysis. Thyroid. 2016;26(3):414-9. Available from: https://doi.org/10.1089/thy.2015.0334
  40. Tahara M, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. Lenvatinib for anaplastic thyroid cancer. Front Oncol. 2017;7:25. Available from: https://doi.org/10.3389/fonc.2017.00025
  41. Frampton JE. Lenvatinib: a review in refractory thyroid cancer. Target Oncol. 2016;11(1):115-22. Available from: https://doi.org/10.1007/s11523-015- 0416-3
  42. Fala L. Lenvima (Lenvatinib), a multireceptor tyrosine kinase inhibitor, approved by the FDA for the treatment of patients with differentiated thyroid cancer. Am Health Drug Benefits. 2015;8:176-9.
  43. Stjepanovic N, Capdevila J. Multikinase inhibitors in the treatment of thyroid cancer: specific role of lenvatinib. Biologics. 2014;8:129-39. Available from: https://doi.org/10.2147/BTT.S39381
  44. Okamoto K, Kodama K, Takase K, Sugi NH, Yamamoto Y, Iwata M, et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models. Cancer Lett. 2013;340(1):97-103. Available from: https://doi.org/10.1016/j.canlet.2013.07.007
  45. Takahashi S, Kiyota N, Yamazaki T, Chayahara N, Nakano K, Inagaki L, et al. A Phase II study of the safety and efficacy of lenvatinib in patients with advanced thyroid cancer. Future Oncol. 2019;15(7):717-26. Available from: https://doi.org/10.2217/fon-2018-0557
  46. Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621-30. Available from: https://doi.org/10.1056/NEJMoa1406470
  47. Kiyota N, Schlumberger M, Muro K, Ando Y, Takahashi S, Kawai Y, et al. Subgroup analysis of Japanese patients in a phase 3 study of lenvatinib in radioiodine-refractory differentiated thyroid cancer. Cancer Sci. 2015;106(12):1714- 21. Available from: https://doi.org/10.1111/cas.12826
  48. Zhu C, Ma X, Hu Y, Guo L, Chen B, Shen K, et al. Safety and efficacy profile of lenvatinib in cancer therapy: a systematic review and meta-analysis. Oncotarget. 2016;12(7):44545-57. Available from: https://doi.org/10.18632/ oncotarget.10019
  49. Frolov MYu, Rogov VA. Otsenka lekarstvennoy terapii progressiruyushchego differentsirovannogo raka shchitovidnoy zhelezy, refrakternogo k radioaktivnomu yodu, u patsientov, prozhivayushchikh v Rossiyskoy Federatsii: farmakoekonomicheskie aspekty [Evaluation of drug therapy in progressing differentiated thyroid cancer refractory to radioactive iodine in patients residing in the Russian Federation: pharmacoeconomic aspects]. Farmakoekonomika. 2017;10(1):3-10.
  50. Rumyantsev PO. Rol’ targetnoy terapii mul’tikinaznymi ingibitorami v lechenii rezistentnogo k radioyodterapii differentsirovannogo raka shchitovidnoy zhelezy [The role of multikinase inhibitors target therapy in radioiodine-resistant differentiated thyroid cancer]. Klinicheskaya i eksperimental’naya tireoidologiya. 2015;2:25-32. Available from: https://doi.org/10.14341/ket2015225-32
  51. Ohtsuru A, Midorikawa S, Ohira T, Suzuki S, Takahashi H, Murakami M, et al. Incidence of thyroid cancer among children and young adults in Fukushima, Japan, screened with 2 rounds of ultrasonography within 5 years of the 2011 Fukushima Daiichi Nuclear Power Station accident. JAMA Otolaryngol Head Neck Surg. 2019;145(1):4-11. Available from: https://doi.org/10.1001/ jamaoto.2018.3121
  52. Zupunski L, Ostroumova E, Drozdovitch V, Veyalkin I, Ivanov V, Yamashita S, et al. Thyroid cancer after exposure to radioiodine in childhood and adolescence: 131I-related risk and the role of selected host and environmental factors. Cancers. 2019;11(10). Available from: https://doi.org/10.3390/Cancers11101481
  53. Toki H, Wada T, Manabe Y, Hirota S, Higuchi T, Tanihata I, et al. Relationship between environmental radiation and radioactivity and childhood thyroid cancer found in Fukushima health management survey. Sci Rep.2020;10(1):4074. Available from: https://doi.org/10.1038/s41598-020- 60999-z
  54. Fugazzola L, Elisei R, Fuhrer D, Jarzab B, Leboulleux S, Newbold K, et al. 2019 European thyroid association guidelines for the treatment and follow-up of advanced radioiodine-refractory thyroid cancer. Eur Thyroid J. 2019;8(5):227- 45. Available from: https://doi.org/10.1159 / 000502229.

Author information:


Garipov Karim Albertovich
Postgraduate Student, Department of Oncology, Radiology and Palliative Medicine, Kazan State Medical Academy; Oncologist of the Oncology Department № 4; Republican Oncological Clinical Dispensary
ORCID ID: 0000-0001-7471-3650
SPIN: 9013-7722
E-mail: karimg@rambler.ru

Afanasieva Zinaida Aleksandrovna
Doctor of Medical Sciences, Professor of the Department of Oncology, Radiology and Palliative Medicine, Kazan State Medical Academy; Head of the Center for the Diagnosis and Treatment of Patients with Thyroid Cancer and other Endocrine Organs, Republican Oncological Clinical Dispensary
Researcher ID: AAE-2027-2020
Scopus ID: 57196436798
ORCID ID: 0000-0002-6187-2983
Author ID: 264270
SPIN: 9921-0860
E-mail: z-afanasieva@mail.ru

Gafiullina Aliya Damirovna
Postgraduate Student, Department of Oncology, Radiology and Palliative Medicine, Kazan State Medical Academy; Oncologist of the Oncology Department № 7, Republican Oncological Clinical Dispensary
ORCID ID: 0000-0002-82470161X
SPIN: 4985-1607
E-mail: gafiullina.aliya@mail.ru

Information about support in the form of grants, equipment, medications

The authors did not receive financial support from manufacturers of medicines and medical equipment

Conflicts of interest: No conflict

Address for correspondence:


Afanasieva Zinaida Aleksandrovna
Doctor of Medical Sciences, Professor of the Department of Oncology, Radiology and Palliative Medicine, Kazan State Medical Academy; Head of the Center for the Diagnosis and Treatment of Patients with Thyroid Cancer and other Endocrine Organs, Republican Oncological Clinical Dispensary

420088, Russian Federation, Kazan, Olonetskaya str., 4, apt. 47

Tel.: +7 (917) 8862923

E-mail: z-afanasieva@mail.ru