Literature Reviews

doi: 10.25005/2074-0581-2021-23-1-78-84
NANOTECHNOLOGY: FINDING NEW SOLUTIONS FOR PREVENTIVE DENTISTRY

A.V. Blinova

Department of Periodontology, Tver State Medical University, Tver, Russian Federation

Individual oral hygiene is the key element of the complex programs, developed for prevention of caries and inflammatory periodontal diseases. The industry of care cosmetic, especially dental care cosmetic, is so sensitive to modern conceptions and scientific achievements. It tries to use them to create more effective and commercially successful products. Incorporation of nanoparticles into dental composites, disinfected solutions for irrigation of root canals, bioactive covers for titanium and zirconium implants no longer cause skepticism. Using nanoparticles in cosmetic formulations allows us to achieve high filling and active surface area, and therefore, improve cleaning and antimicrobial properties. The aim of this review is to study the promising and already existing areas for using nanotechnologies for prevention of dental disorders. First of all, we are interested in the creation of new oral hygiene products. The samples of nano-containing toothpastes, mouthwashes, mousses and adhesive films, already presented on the market, demonstrate a high remineralizing potential, and with regular use, they are apparently able to provide a prolonged bacteriostatic effect. At the same time, currently there is no information in the public science press about the general or local toxic effects, caused by these biologically active drugs.

Keywords: Nanotechnology, preventive dentistry, individual oral hygiene, hygiene products.

Download file:


References
  1. Valm AM. The structure of dental plaque microbial communities in the transition from health to dental caries and periodontal disease. J Mol Biol. 2019;431:2957-69. Available from: https://doi.org/10.1016/j. jmb.2019.05.016
  2. Li H, Chen Q, Zhao J, Urmila K. Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep. 2015;5:11033. Available from: https://doi.org/10.1038/srep11033
  3. Luan B, Huynh T, Zhou R. Complete wetting of graphene by biological lipids. Nanoscale. 2016;8:5750–5754. Available from: https://doi.org/10.1039/ C6NR00202A
  4. Gao W, Thamphiwatana S, Angsantikul P, Zhang L. Nanoparticle approaches against bacterial infections. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:532-47. Available from: https://doi.org/10.1002/wnan.1282
  5. Gaillet S, Rouanet JM. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms – a review. Food Chem Toxicol. 2015;77:58-63. Available from: https://doi.org/10.1016/j.fct.2014.12.019
  6. Ahmed F, Prashanth ST, Sindhu K, Nayak A, Chaturvedi S. Antimicrobial efficacy of nanosilver and chitosan against Streptococcus mutans, as an ingredient of toothpaste formulation: An in vitro study. J Indian Soc Pedod. Prev Dent. 2019;37:46-54. Available from: https://doi.org/10.4103/JISPPD. JISPPD_239_18
  7. Abadi MFD, Mehrabian S, Asghari B, Namvar AE, Ezzatifar F, Lari AR. Silver nanoparticles as active ingredient used for alcohol-free mouthwash. GMS Hyg Infect Control. 2013;8:Doc05. Available from: https://doi.org/10.3205/ dgkh000205. eCollection 2013
  8. Rumyantsev VA, Nekrasov AV, Moiseev DA, Zadorozhnyy DV, Pankin PI. Bioplyonka v endodontii. Chast′ II. Metody bor′by s bioplyonkoy pri endodonticheskom lechenii zubov (obzor literatury) [Biofilm in endodontics. Part 2. Methods of biofilm control in endodontic dental treatment (literature review)]. Endodontiya Today. 2018;2:38-42
  9. Balagopal S, Arjunkumar R. Chlorhexidine: The gold standard antiplaque agent. J Pharm Sci. 2013;5:270
  10. Mackevica A, Olsson ME, Hansen SF. The release of silver nanoparticles from commercial toothbrushes. J Hazard Mater. 2017;322:270-5. Available from: https://doi.org/10.1016/j.jhazmat.2016.03.067
  11. Baygin O, Tuzuner T, Yilmaz N, Aksoy S. Short-term antibacterial efficacy of a new silver nanoparticle-containing toothbrush. J Pak Med Assoc. 2017;67(5):818-9.
  12. do Nascimento C, Paulo DF, Pita MS, Pedrazzi V, de Albuquerque Junior RF. Microbial diversity of the supra- and subgingival biofilm of healthy individuals after brushing with chlorhexidine – or silver-coated toothbrush bristles. Can J Microbiol. 2015;61:112-23. Available from: https://doi.org/10.1139/ cjm-2014-0565
  13. Ni C, Zhou J, Kong N, Bian T, Zhang Y, Huang X, et al. Gold nanoparticles modulate the crosstalk between macrophages and periodontal ligament cells for periodontitis treatment. Biomaterials. 2019;206:115-32. Available from: https://doi.org/10.1016/j.biomaterials.2019.03.039
  14. AlKahtani RN. The implications and applications of nanotechnology in dentistry: A review. Saudi Dent J. 2018;30(2):107-16. Available from: https://doi. org/10.1016/j.sdentj.2018.01.002
  15. Raval C, Vyas K, Gandhi U, Patel B, Patel P. Nanotechnology in dentistry: A review. J Adv Med Dent Sci Res. 2016;4:3
  16. Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S. Gold nanoparticles: An efficient antimicrobial agent against enteric bacterial human pathogen. Nanomaterials. 2016;6:71. Available from: https://doi.org/10.3390/ nano6040071
  17. Zheng K, Setyawati MI, Leong DT, Xie J. Antimicrobial gold nanoclusters. ACS Nano. 2017;11(7):6904-10. Available from: https://doi.org/10.1021/acsnano.7b02035
  18. Junevičius J, Žilinskas J, Česaitis K, Česaitienė G, Gleiznys D, Maželienė Ž. Antimicrobial activity of silver and gold in toothpastes: A comparative analysis. Stomatologija. 2015;17:9-12
  19. Hernández-Sierra JF, Ruiz F, Pena DCC, Martínez-Gutiérrez F, Martínez AE, de Jesús Pozos Guillén A, et al. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed Nanotechnol Biol Med. 2008;4:237-40. Available from: https://doi.org/10.1016/j. nano.2008.04.005
  20. Rajchakit U, Sarojini V. Recent developments in antimicrobial-peptide-conjugated gold nanoparticles. Bioconjug Chem. 2017;28(11):2673-86. Available from: https://doi.org/10.1021/acs.bioconjchem.7b00368
  21. Chen WY, Lin JY, Chen WJ, Luo L, Wei-Guang Diau E, Chen YC. Functional gold nanoclusters as antimicrobial agents for antibiotic-resistant bacteria. Nanomedicine. 2010;5:755-64. Available from: https://doi.org/10.2217/ nnm.10.43
  22. Yougbare S, Chang TK, Tan SH, Kuo JC, Hsu PH, Su CY, et al. Antimicrobial gold nanoclusters: Recent developments and future perspectives. Int J Mol Sci. 2019;20(12):2924. Available from: https://doi.org/10.3390/ijms20122924
  23. Zheng Y, Liu W, Chen Y, Li C, Jiang H, Wang X. Conjugating gold nanoclusters and antimicrobial peptides: From aggregation-induced emission to antibacterial synergy. J Colloid Interface Sci. 2019;546:1-10. Available from: https:// doi.org/10.1016/j.jcis.2019.03.052
  24. Vargas-Reus MA, Memarzadeh K, Huang J, Ren GG, Allaker RP. Antimicrobial activity of nanoparticulate metal oxides against periimplantitis pathogens. Int J Antimicrob Agents. 2012;40(2):135-9. Available from: https://doi. org/10.1016/j.ijantimicag.2012.04.012
  25. Agarwal H., Nakara A., Shanmugam V.K. Anti-inflammatory mechanism of various metal and metal oxide nanoparticles synthesized using plant extracts: A review. Biomed Pharmacother Biomed Pharmacother. 2019;109:2561-72. Available from: https://doi.org/10.1016/j.biopha.2018.11.116
  26. Osorio R, Yamauti M, Osorio E, Ruiz-Requena M, Pashley D, Tay F, et al. Zinc reduces collagen degradation in demineralized human dentin explants. J Dent. 2011;39:148-53. Available from: https://doi.org/10.1016/j. jdent.2010.11.005
  27. Takatsuka T, Tanaka K, Iijima Y. Inhibition of dentine demineralization by zinc oxide: In vitro and in situ studies. Dent Mater. 2005;21:1170-7. Available from: https://doi.org/10.1016/j.dental.2005.02.006
  28. Mahmood A, Mneimne M, Zou LF, Hill RG, Gillam DG. Abrasive wear of enamel by bioactive glass-based toothpastes. Am J Dent. 2014;27:263-7
  29. Alsubaie AA, Sarfraz Z, Alali AA, Alessa AE, Subaie HAA, Shah AT, et al. Effect of nano-zinc oxide and fluoride-doped bioactive glass-based dentifrices on esthetic restorations. Dent Med Probl. 2019;56:59-65. Available from: https://doi.org/10.17219/dmp/103597
  30. Lynch E, Brauer DS, Karpukhina N, Gillam DG, Hill RG. Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity. Dent Mater. 2012;28:168-78. Available from: https://doi.org/10.1016/j.dental.2011.11.021
  31. Almoudi MM, Hussein AS, Abu Hassan MI, Mohamad Zain N. A systematic review on antibacterial activity of zinc against Streptococcus mutans. Saudi Dent J. 2018;30:283-91. Available from: https://doi.org/10.1016/j. sdentj.2018.06.003
  32. Ahrari F, Eslami N, Rajabi O, Ghazvini K, Barati S. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. Dent Res J. 2015;12:44-9. Available from: https://doi.org/10.4103/1735-3327.150330
  33. Ghosh S, Goudar VS, Padmalekha KG, Bhat SV, Indi SS, Vasan HN. ZnO/Ag nanohybrid: Synthesis, characterization, synergistic antibacterial activity and its mechanism. RSC Adv. 2012;2:930-40. Available from: https://doi. org/10.1039/C1RA00815C
  34. Azizi-Lalabadi M, Ehsani A, Divband B, Alizadeh-Sani M. Antimicrobial activity of Titanium dioxide and Zinc oxide nanoparticles supported in 4A zeolite and evaluation the morphological characteristic. Sci Rep. 2019;9:1-10. Available from: https://doi.org/10.1038/s41598-019-54025-0
  35. de Dicastillo CL, Patiño C, Galotto MJ, Vásquez-Martínez Y, Torrent C, Alburquenque D, et al. Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria. Beilstein J Nanotechnol. 2019;10:1716- 25. Available from: https://doi.org/10.3762/bjnano.10.167
  36. Komatsu O, Nishida H, Sekino T, Yamamoto K. Application of titanium dioxide nanotubes to tooth whitening. Nano Biomed. 2014;6:63-72.
  37. Monteiro NR, Basting RT, Amaral FLBD, FranÇa FMG, Turssi CP, Gomes OP, et al. Titanium dioxide nanotubes incorporated into bleaching agents: Physicochemical characterization and enamel color change. J Appl Oral Sci. 2020;28:e20190771. Available from: https://doi.org/10.1590/1678-7757- 2019-0771
  38. Sürmelioğlu D, Özçetin HK, Özdemir ZM, Yavuz SA, Aydın U. Effectiveness and SEM-EDX analysis following bleaching with an experimental bleaching gel containing titanium dioxide and/or chitosan. Odontology. 2021;109(1):114
  39. Available from: https://doi.org/10.1007/s10266-020-00526-8
  40. Arutyunov SD, Gezalova NK, Maev IV, Zakharova NV, Savkova EV, Stepanov AG, i dr. Sposob lecheniya diskolorita zubov [The method of treating teeth discoloration]. Patent RF № 2005141335/14. 10.01.2007.
  41. Povazhnyy DB, Petrovich YuA. Lechebno-profilakticheskaya zubnaya pasta [The therapeutic and prophylactic toothpaste]. Patent RF № 2005105881/15. 20.11.2007.
  42. Reynolds E. Stabilizirovannye kompleksy fosfata kal′tsiya [Stabilized calcium phosphate complexes]. Patent RF № 2007123603/15. 27.11.2010
  43. Dewani N, Kashyap N, Avinash A, Kumar B, Singh M, Pawar P. Effect of casein phosphopeptide-amorphous calcium phosphate as a remineralizing agent – an in vivo study. Indian J Dent Res. 2019;30(6):820-5. Available from: https:// doi.org/10.4103/ijdr.IJDR_779_1
  44. Favretto CO, Delbem ACB, Moraes JCS, Camargo ER, de Toledo PTA, Pedrini D. Dentinal tubule obliteration using toothpastes containing sodium trimetaphosphate microparticles or nanoparticles. Clin Oral Investig. 2018;22(9):3021-9. Available from: https://doi.org/10.1007/s00784-018- 2384-3
  45. Favretto CO, Delbem ACB, Toledo PTA, Pedrini D. Hydraulic conductance of dentin after treatment with fluoride toothpaste containing sodium trimetaphosphate microparticles or nanoparticles. Clin Oral Investig. 2021;25(4):2069-76. Available from: https://doi.org/10.1007/s00784-020- 03516-w
  46. Sereda G, Saeedi S. Pre-treatment of dentin with chondroitin sulfate or L-arginine modulates dentin tubule occlusion by toothpaste components. Am J Dent. 2019;32(2):81-8
  47. Markovitts K, Dzhelfer M. Kompozitsiya dlya lecheniya zubov s povyshennoy chuvstvitel′nost′yu, sposob lecheniya zubov s povyshennoy chuvstvitel′nost′yu i sposob blokirovki ili germetizatsii dentinovykh kanal′tsev v zubakh [A composition for the treatment of sensitive teeth, a method for the treatment of sensitive teeth, and a method for blocking or sealing the dentin tubules in the teeth]. Patent RF № 97118435/14. 10.03.2001.
  48. Mayes В. Synthetic Hectorite – a new toothpaste binder. International Journal of Cosmetic Science. 1979;1,329-40. Available from: https://doi. org/10.1111/j.1467-2494.1979.tb00227.x
  49. Gaffar A, John F. Anticalculus oral composition. Patent of the USA № 469374/06. 24.02.1983
  50. Tomás H, Alves CS, Rodrigues J. Laponite: A key nanoplatform for biomedical applications? Nanomedicine. 2018;14(7):2407-20. Available from: https:// doi.org/10.1016/j.nano.2017.04.016
  51. Das SS, Neelam, Hussain K, Singh S, Hussain A, Faruk A, et al. Laponite-based nanomaterials for biomedical applications: A review. Curr Pharm Des. 2019;25(4):424-43. Available from: https://doi.org/10.2174/138161282566 6190402165845
  52. Zhang R, Xie L, Wu H, Yang T, Zhang Q, Tian Y, et al. Alginate/laponite hydrogel microspheres co-encapsulating dental pulp stem cells and VEGF for endodontic regeneration. Acta Biomater. 2020;113:305-16. Available from: https:// doi.org/10.1016/j.actbio.2020.07.012
  53. Ordikhani F, Dehghani M, Simchi A. Antibiotic-loaded chitosan-Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. J Mater Sci Mater Med. 2015;26(12):269. Available from: https://doi.org/10.1007/s10856-015-5606-0
  54. Leon-Morales CF, Leis AP, Strathmann M, Flemming HC. Interactions between laponite and microbial biofilms in porous media: implications for colloid transport and biofilm stability. Water Res. 2004;38(16):3614-26. Available from: https://doi.org/10.1016/j.watres.2004.05.009

Author information:

Blinova Alisa Vladimirovna
Postgraduate Student, Department of Periodontology, Tver State Medical University
ORCID ID: 0000-0002-4315-163X
SPIN: 4239-0519
Author ID: 985695
E-mail: blinova-alisa@mail.ru

Information about support in the form of grants, equipment, medications

The author did not receive financial support from manufacturers of medicines and medical equipment

Conflict of interest: No conflict

Address for correspondence:

Blinova Alisa Vladimirovna
Postgraduate Student, Department of Periodontology, Tver State Medical University

170100, Russian Federation, Tver, Sovetskaya Str., 4

Tel.: +7 (919) 0516059

E-mail: blinova-alisa@mail.ru