Literature Reviews

doi: 10.25005/2074-0581-2021-23-4-585-594
A REVIEW OF CYCLODESTRUCTIVE SURGICAL PROCEDURES FOR THE TREATMENT OF VARIOUS TYPES OF GLAUCOMA

F. Furkatzod, Kh.J. Karim-Zade, Sh.K. Makhmadzoda

Department of Ophthalmology, Avicenna Tajik State Medical University, Dushanbe, Republic of Tajikistan

Glaucoma remains a significant problem in ophthalmology. It is characterised by increased intraocular pressure (IOP), visual field loss, and optic nerve degeneration. Despite some progress achieved in the diagnosis and treatment of the disease, millions still suffer from glaucoma (currently, according to WHO, there are more than 106 million people globally), and many patients are already in the later stages. The accompanying pain syndrome sometimes forces doctors to remove the eye. In this regard, several so-called organ-preserving operations were introduced, the purpose of which is to reduce the production of intraocular fluid (IOF) and, accordingly, eliminate the pain syndrome. Glaucoma treatment includes conservative and surgical interventions. Surgical methods for glaucoma treatment aim to improve the outflow of intraocular fluid (fistulising operations) or reduce its production (cyclodestructive procedures). This paper analyses the evolution of surgical interventions to reduce intraocular fluid production by destroying the aqueous humour-producing ciliary processes. Systematic review searches were performed using Google Scholar, Pubmed, Web of Science, Cyberleninka, and Cochrane Library databases for articles published up to 2020 using keywords related to cyclodestruction (CD), cyclophotocoagulation (CPC), and treatment of refractory glaucoma (RG).

Keywords: Glaucoma, cyclodestruction, cyclophotocoagulation, ciliary body, diode laser.

Download file:


References
  1. Schuster AK, Erb C, Hoffmann EM, Dietlein T, Pfeiffer N. The diagnosis and treatment of glaucoma. Dtsch Arztebl Int. 2020;117(13):225-34. Available from: https://doi.org/10.3238/arztebl.2020.0225
  2. Conlon R, Saheb H, Ahmed II. Glaucoma treatment trends. Can J Ophthalmol. 2017;52(1):114-24. Available from: https://doi.org/10.1016/j.jcjo.2016.07.013
  3. Khomchik OV, Bolshunov AV, Ilina TS. Lazernye tsiklodestruktivnye tekhnologii v lechenii glaukom [Laser cyclodestructive technologies in treatment of glaucoma]. Vestnik oftal'mologii. 2012;128(3):54-9.
  4. Tseng VL, Coleman AL, Chang MY, Caprioli J. Aqueous shunts for glaucoma. Cochrane Database Syst Rev. 2017;7(7):CD004918. Available from: https://doi. org/10.1002/14651858
  5. Babushkin AE. Tsiklodestruktivnye vmeshatel'stva v lechenii refrakternoy glaukomy (obzor literatury) [Cyclodestructive techniques in treatment of refractory glaucoma]. Tochka zreniya. Vostok – Zapad. 2014;2:16-8.
  6. Razeghinejad MR, Spaeth GL. A history of the surgical management of glaucoma. Optom Vis Sci. 2011;88(1):39-47. Available from: https://doi.org/10.1097/ OPX.0b013e3181fe2226
  7. Bloom P, Negi A, Kersey T, Crawley L. Cyclodestructive techniques. In: Shaarawy T, Sherwood M, Hitchings R, Crowston J, editors. Glaucoma. 2nd ed. London, UK: Elsevier; 2015. p. 1150-9.
  8. Berke S. Cyclodiathermy. In: Shaarawy T, Sherwood M, Hitchings R, Crowston J, editors. Glaucoma. 2nd ed. London, UK: Elsevier; 2015. p. 1160-6.
  9. Tzamalis A, Pham DT, Wirbelauer C. Diode laser cyclophotocoagulation versus сyclodiathermy in the treatment of refractory glaucoma. European Journal of Ophthalmology. 2011;21(5):589-96.
  10. Scheie HG, Frayer WC, Spencer RW. Cyclodiathermy: A clinical and tonographic evaluation. AMA Arch Ophthalmol.1955;53:839-46.
  11. Denis P, Aptel F, Rouland J-F, Nordmann J-P, Lachkar Y, Renard J-P, et al. Cyclocoagulation of the ciliary bodies by high-intensity focused ultrasound: A 12-month multicenter study. IOVS. 2015;56:1089-96.
  12. Bietti G. Surgical intervention on the ciliary body; new trends for the relief of glaucoma. JAMA. 1950;142:889-97.
  13. Gorsler I, Thieme H, Meltendorf C. Cyclophotocoagulation and cyclocryocoagulation as primary surgical procedures for open-angle glaucoma. Graefes Arch Clin Exp Ophthalmol. 2015;253:2273-7.
  14. De Roetth A Jr. Cryosurgery for the treatment of glaucoma. Trans Am Ophthalmol Soc. 1965;63:189-204.
  15. Vyunova DM. Tsiklokrioterapiya pri bolyashchey glaukome [Cyclocryosurgery for the treatment of painful glaucoma]. Oftal'mologicheskiy zhurnal. 1972;2:133-4.
  16. Zhang B. Contrast of surgical effect of two different operations for neovascular glaucoma. International Journal of Ophthalmology 2010;10(4):671-3.
  17. Aptel F, Charrel T, Lafon C, Romano F, Chapelon J-Y, Blumen-Ohana E, et al. Miniaturized high-intensityfocused ultrasound device in patients with glaucoma: A clinical pilot study. Invest Ophthalmol Vis Sci. 2011;52:8747-53.
  18. Aptel F, Denis P. Ultrasonic circular cyclocoagulation. Surg Innov Glaucoma. 2016;34:411-20.
  19. Uzunel UD, Yüce B, Küsbeci T, Ateş H. Transpupillary argon laser cyclophotocoagulation in a refractory traumatic glaucoma patient with aphakia and aniridia. Turk J Ophthalmol. 2016;46:38-40.
  20. Bloom PA, Clement CI, King A, Noureddin B, Sharma K, Hitchings RA, et al. A comparison between tube surgery, Nd:YAG laser and diode laser cyclophotocoagulation in the management of refractory glaucoma. BioMed Research International. 2013;2013:371951. Available from: https://doi. org/10.1155/2013/371951
  21. Ardamakova AV, Bolshunov AV, Ilina TS, Fedoruk NA, Siplivyy VI. Transpupillyarnaya lazernaya fotokoagulyatsiya tsiliarnogo tela: proshloe, nastoyashchee i budushchee [Transpupillar laser photocoagulation of a ciliary body: Past, present and future]. Vestnik oftal'mologii. 2017;133(1):81-7. Available from: https://doi.org/10.17116/oftalma2017.133181-87
  22. Sokolovskaya TV, Tikhonova MI. Tsiklodestruktivnye vmeshatel'stva pri lechenii glaukomy: istoriya, real'nost', perspektivy [Сyclodestructive interventions in the treatment of glaucoma: History, reality, perspectives]. Oftal'mologicheskie vedomosti. 2019;12(3):45-58. Available from: https://doi.org/10.17816/ OV11132
  23. Rasmuson E, Lindén C, Lundberg B, Jóhannesson G. Efficacy and safety of transscleral cyclophotocoagulationin Swedish glaucoma patients. Acta Ophthalmol. 2019;97(8):764-70. Available from: https://doi.org/10.1111/aos.14125
  24. Charisis SK, Detorakis ET, Vitanova VS, Panteleontidis VA, Kounis GA, Tsilimbaris MK. Contact transcleral photodynamic cyclo-suppression inhuman eyes: A feasibility study. Can J Ophthalmol. 2011;46:196-8.
  25. Ndulue JK, Rahmatnejad K, Sanvicente C, Wizov SS, Moster MR. Evolution of cyclophotocoagulation. Ophthalmic Vis Res. 2018;13(1):55-61. Available from: https://doi.org/10.4103/jovr.jovr-190-17
  26. Shields MB, Quigley HA. Improved outcomes for transscleral сyclophotocoagulation. J Glaucoma. 2018;27(8):674-81. Available from: https://doi. org/10.1097/IJG.0000000000001008
  27. Tan NYQ, Ang M, Chan ASY, Barathi VA, Tham CC, Barton K, et al. Transscleral cyclophotocoagulation and its histological effects on the conjunctiva. Sci Rep. 2019;9(1):18703. Available from: https://doi.org/10.1038/s41598-019-55102- 0.PMID:31822709
  28. Rotchford AP, Jayasawal R, Madhusudhan S, Ho S, King A, Vernon S. Transscleral diode laser cycloablation in patients with good vision. Br J Ophthalmol. 2010;94:1180-3.
  29. Vila-Arteaga J, Stirbu O, Suriano MM, Vila-Mascarell E. A new technique for diode laser cyclophotocoagulation. J Glaucoma. 2014;23:35-6.
  30. Eldaly M, Bunce C, ElSheikha O, Wormald R. Laser cyclophotocoagulation versus trabeculectomy for open-angle glaucoma. Cochrane Database of Systematic Reviews. 2014, Issue 2. Available from: https://doi.org/10.1002/14651858
  31. Liu W, Qin L, Xu C, Huang D, Guo R, Ji J, et al. Transscleral cyclophotocoagulation followed by cataract surgery: A novel protocol to treat refractory acute primary angle closure. BMC Ophthalmol. 2020;20(1):209. Available from: https://doi. org/10.1186/s12886-020-01483-0
  32. Toth M, Shah A, Hu K, Bunce C, Gazzard G. Endoscopic cyclophotocoagulation (ECP) for open angle glaucoma and primary angle closure. Cochrane Database Syst Rev. 2019;2:CD012741.
  33. Ishida K. Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol. 2013;24:102-10.
  34. Tan JCH, Francis BA, Noecker R, Uram M, Dustin L, Chopra V. Endoscopic cyclophotocoagulation and pars plana ablation (ECP-plus) to treat refractory glaucoma. J Glaucoma. 2016;25:e117-22.
  35. Tulin DV, Kulikov AN, Skvortsov VYu. Sravnitel'nyy analiz nekotorykh parametrov bezopasnosti primeneniya endoskopicheskoy lazernoy tsiklodestruktsii i transskleral'noy lazernoy tsiklotermoterapii pri khirurgicheskom lechenii glaukomy [Comparative analysis of some safety parameters of endoscopic laser cyclodestruction and transscleral laser cyclothermotherapy in the surgical treatment of glaucoma]. Sovremennye tekhnologii v oftal'mologii. 2018;4:247-9.
  36. Sanchez FG, Peirano-Bonomi JC, Brossard Barbosa N, Khoueir Z, Grippo TM. Update on micropulse transscleral cyclophotocoagulation. J Glaucoma. 2020;29(7):598-603. Available from: https://doi.org10.1097/ IJG.0000000000001539
  37. Tan AM, Chockalingam M, Aquino MC, Lim ZIL, See JLS, Chew PT. Micropulse transscleral diode laser cyclophotocoagulation in the treatment of refractory glaucoma. Clin Exp Ophthalmol. 2010;38:266-72.
  38. Kuchar S, Moster MR, Reamer CB, Waisbourd M. Treatment outcomes of micropulse transscleral cyclophotocoagulation in advanced glaucoma. Lasers Med Sci. 2016;31:393.
  39. Aquino MC, Barton K, Tan AM. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: A randomized exploratory study. Clin Exp Ophthalmol. 2015;43(1):40-6.
  40. Abdelrahman AM, El Sayed YM. Micropulse versus continuous wave transscleral cyclophotocoagulation in refractory pediatric glaucoma. J Glaucoma. 2018;27(10):900-5. Available from: https://doi.org/10.1097/ IJG.0000000000001053
  41. Lee JH, Shi Y, Amoozgar B, Aderman C, De Alba Campomanes A, Lin S, et al. Outcome of micropulse laser transscleral cyclophotocoagulation on pediatric versus adult glaucoma patients. J Glaucoma. 2017;26:936-9.
  42. Khodzhaev NS, Sidorova AV, Starostina AV, Eliseeva MA. Mikro-impul'snaya transskleral'naya tsiklofotokoagulyatsiya v lechenii glaukomy [Micropulse transscleral cyclophotocoagulation in the treatment of glaucoma]. Rossiyskiy oftal'mologicheskiy zhurnal. 2020;13(2):105-11. Available from: https://doi. org/10.21516/2072-0076-2020-13-2-105-111
  43. Aquino MC, Barton K, Tan AM, Sng C, Li X, Loon SW, et al. Micropulse versus continuous wave transscleral diode cyclophotocoagulation in refractory glaucoma: A randomized exploratory study. Clin Exp Ophthalmol. 2014;43:40-6.
  44. Williams AL, Moster MR, Rahmatnejad K. Clinical efficacy and safety profile of micropulse trans-scleral cyclophotocoagulation in refractory glaucoma. J Glaucoma. 2018;27(5):445-9. Available from https://doi.org/10.1097/ IJG.0000000000000934
  45. Zaarour K, Abdelmassih Y, Arej N. Outcomes of micropulse trans-scleral cyclophotocoagulation in uncontrolled glaucoma patients. J Glaucoma. 2019;28(3):270- 5. Available from https://doi.org/10.1097/IJG.0000000000001174
  46. Yelenskiy A, Gillette TB, Arosemena A. Patient outcomes following micropulse trans-scleral cyclophotocoagulation: Intermediate-term results. J Glaucoma. 2018;27(10):920-5. Available from https://doi.org/10.1097/ IJG.0000000000001023
  47. Nguyen AT, Maslin JS, Noecker JR. Early results of micropulse trans-scleral cyclophotocoagulation for the treatment of glaucoma. Eur J Ophthalmol. 2020;30(4):700-5. Available from https://doi.org/10.1177/1120672119839303

Authors' information:


Makhmadzoda Shamsullo Kurbon
Candidate of Medical Sciences, Associate Professor, Head of the Department of Ophthalmology, Avicenna Tajik State Medical University
ORCID ID: 0000-0001-8292-8344
SPIN: 3929-7111
Author ID: 3390175
E-mail: shamsullo-@mail.ru

Karim-Zade Khakima Jangovarovna
Candidate of Medical Sciences, Associate Professor of the Department of Ophthalmology, Avicenna Tajik State Medical University
Scopus ID: 14031720200
Researcher ID: AAO-7768-2020
ORCID ID: 0000-0003-3922-3829
SPIN: 1646-0538
Author ID: 1072708
E-mail: kh.karimzade@gmail.com

Furkatzod Farrukh
Postgraduate Student, Department of Ophthalmology, Avicenna Tajik State Medical University
ORCID ID: 0000-0002-0485-4228
E-mail: farrukh918@gmail,com

Information about support in the form of grants, equipment, medications

The research was carried out in accordance with the research plan of Avicenna Tajik State Medical University (state registration number – 0121TJ1184). The authors did not receive financial support from manufacturers of medicines and medical equipment

Conflicts of interest: No conflict

Address for correspondence:


Karim-Zade Khakima Jangovarovna
Candidate of Medical Sciences, Associate Professor of the Department of Ophthalmology, Avicenna Tajik State Medical University

734003, Republic of Tajikistan, Dushanbe, Rudaki Ave., 139

Tel.: +992 (934) 458236

E-mail: kh.karimzade@gmail.com