Neurosurgery
doi: 10.25005/2074-0581-2023-25-1-94-107
SUPPLEMENTARY MOTOR AREA AND CLINICAL PICTURE OF ITS LESION
Pirogov National Medical and Surgical Center, Moscow, Russian Federation
Methods: The supplementary motor area (SMA) is a cortical region, that is located on the medial surface of the frontal lobe entirely within the interhemispheric fissure between the primary motor cortex (PMC) and prefrontal cortex (PFC). This area is a heterogeneous region in its structure, as well as in its connections with other parts of the brain; on the basis of these differences, the pre-SMA and SMA-proper regions are distinguished in it. Numerous neural connections with other parts of the central nervous system (CNS) suggest the involvement of the SMA in many cognitive functions, and not only in higher motor ones, as previously was thought. In particular, in the dominant hemisphere, the SMA performs the speech function through the frontal oblique fascicle (FOF), a bundle of association fibers that connects the SMA with Broca's area. In the event of various pathologies affecting the SMA and after neurosurgical manipulations in this area, a variety of neurological disorders can occur both motor and verbal. With the damage of this cortical region in the dominant hemisphere, SMA syndrome (akinetic mutism) can occur. This paper provides a review of the anatomical, cytoarchitectonic, and functional features of the SMA, as well as a detailed description of the clinical picture of the lesion of this cortical region.
Keywords: Brain, supplementary motor area, SMA syndrome.
References
- Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig, Germany: Barth; 1909. 324 p. https://doi.org/10.1097/00005053-191012000-00013
- Campbell AW. Histological studies on the localization of cerebral function. Cambridge, UK: University Press; 1905. 360 p. https://doi.org/10.5962/bhl. title.1903
- Penfield W. The supplementary motor area in the cerebral cortex of man. Arch F Psychiatr U Z Neur. 1950;185:670-4. https://doi.org/10.1007/BF00935517
- Penfield W, Welch K. The supplementary motor area of the cerebral cortex; a clinical and experimental study. AMA Arch Neurol Psychiatry. 1951;66(3):289- 317. https://doi.org/10.1001/archneurpsyc.1951.02320090038004
- Penfield W, Jasper H. Epilepsy and the functional anatomy of the human brain. Boston, USA: Little, Brown and Co.; 1954. https://doi.org/10.1126/ science.119.3097.645-b
- . Talairach J, Bancaud J. The supplementary motor area in man (Anatomofunctional findings by stereoelectroencephalography in epilepsy). International Journal of Neurology. 1966;5:330-47.
- . Erickson T, Woolsey C. Observations of the supplementary motor area of man. Transactions of the American Neurological Association. 1982;76:50-2.
- Murray E, Coulter J. Organization of corticospinal neurons in the monkey. Journal of Comparative Neurology. 1981;195:339-65. https://doi.org/10.1002/ cne.901950212
- Tanji J, Kurata K. Comparison of movement-related activity in two cortical motor areas of primates. Journal of Neurophysiology. 1982;48:633-53. https:// doi.org/10.1152/jn.1982.48.3.633
- . Deecke L, Kornhuber H. An electrical sign of participation of the mesial "supplementary" motor area in human voluntary finger movement. Brain Resear. 1978;159:473-6. https://doi.org/10.1016/0006-8993(78)90561-9
- Orgogozo J, Larsen B, Roland P. Activation de I'aire motrice supplementaire au cours des mouvements volontaire chez 1'homme: Etudes par le dibit sanguin cerebral focal. Revue Neurologique. 1979;135:705-17.
- Laplane D, Talairach J, Meininger V, Bancaud J, Orgogozo J. Clinical consequences of corticectomies involving the supplementary motor area in man. Journal of Neurological Sciences. 1977;34:310-4. https://doi.org/10.1016/0022- 510x(77)90148-4
- . Ford A, McGregor K, Case K, Crosson B, White K. Structural connectivity of Broca's area and medial frontal cortex. Neuroimage. 2010;52(4):1230-7. https://doi.org/10.1016/j.neuroimage.2010.05.018
- Vergani F, Lacerda L, Martino J, Attems J, Morris C, Mitchell P, et al. White matter connections of the supplementary motor area in humans. J Neurol Neurosurg Psychiatry. 2014;85(12):1377-85. https://doi.org/10.1136/jnnp2013-307492
- Nachev P, Kennard C, Husain M. Functional role of the supplementary and presupplementary motor areas. Nat Rev Neurosci. 2008;9:856-69. https://doi. org/10.1038/nrn2478
- Ruan J, Bludau S, Palomero‑Gallagher N, Caspers S, Mohlberg H, Eickhoff S, et al. Cytoarchitecture, probability maps, and functions of the human supplementary and pre-supplementary motor areas. Brain Structure and Function. 2018;223:4169-86. https://doi.org/10.1007/s00429-018-1738-6
- Matsuzaka Y, Aizawa H, Tanji J. A motor area rostral to the supplementary motor area (presupplementary motor area) in the monkey: Neuronal activity during a learned motor task. J Neurophysiol. 1992;68:653-62. https://doi. org/10.1152/jn.1992.68.3.653
- Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Dabringhaus A, et al. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. J Anat. 1995;187(Pt 3):515-37.
- Picard N, Strick P. Imaging the premotor areas. Curr Opin Neurobiol. 2001;11:663-72. https://doi.org/10.1016/s0959-4388(01)00266-5
- . Inase M, Tokuno H, Nambu A, Akazawa T, Takada M. Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: Comparison with the input zones from the supplementary motor area. Brain Res. 1998;833:191-201. https://doi.org/10.1016/s0006- 8993(99)01531-0
- Luppino G, Matelli M, Camarda R, Rizzolatti G. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. J Comp Neurol. 1993;338:114-40. https://doi.org/10.1002/cne.903380109
- Tehovnik E, Sommer M, Chou I, Slocum W, Schiller P. Eye fields in the frontal lobes of primates. Brain Res. 2000;Rev.32:413-48. https://doi.org/10.1016/ s0165-0173(99)00092-2
- Geyer S, Matelli M, Luppino G, Schleicher A, Jansen Y, Palomero-Gallagher N, et al. Receptor autoradiographic mapping of the mesial motor and premotor cortex of the macaque monkey. J Comp Neurol. 1998;397:231- 50. https://doi.org/10.1002/(sici)1096-9861(19980727)397:2%3C231::aidcne6%3E3.0.co;2-1
- Fujii N, Mushiake H, Tanji J. Distribution of eye and arm-movement-related neuronal activity in the SEF and in the SMA and Pre-SMA of monkeys. Neurophysiol. 2002;87:2158-66. https://doi.org/10.1152/jn.00867.2001
- . Picard N, Strick P. Motor areas of the medial wall: A review of their location and functional activation. Cereb Cortex. 1996;6:342-53. https://doi.org/10.1093/ cercor/6.3.342
- Potgieser A, de Jong B, Wagemakers M, Hoving E, Groen R. Insights from the supplementary motor area syndrome in balancing movement initiation and inhibition. Front Hum Neurosci. 2014;8:960. https://doi.org/10.3389/ fnhum.2014.00960
- Akkal D, Dum R, Strick P. Supplementary motor area and presupplementary motor area: Targets of basal ganglia and cerebellar output. J Neurosci. 2007;27(40):10659-73. https://doi.org/10.1523/JNEUROSCI.3134-07.2007
- Kandel ER. Essentials of neural science and behavior. NY, USA: McGraw-Hill; 2007.
- Schmahmann J, Pandya D. Fiber Pathways of the Brain. Oxford, UK: Oxford University Press; 2009. 654 p
- Kim J, Lee J, Jo H, Kim S, Lee J, Kim S, et. al. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: Functional connectivity based parcellation method. Neuroimage. 2010;49:2375-86. https://doi.org/10.1016/j.neuroimage.2009.10.016
- Heiferman D, Ackerman P, Hayward D, Primeau M, Anderson D, Prabhu V. Bilateral supplementary motor area syndrome causing akinetic mutism following parasagittal meningioma resection. Neuroscience Discovery. 2014;2(1):7. https://doi.org/10.7243/2052-6946-2-7
- . Fernandez-Miranda J, Rhoton A, Kakizawa Y, Choi C, Alvarez-Linera J. The claustrum and its projection system in the human brain: A microsurgical and tractographic anatomical study. J Neurosurg. 2008;108(4):764-74. https://doi. org/10.3171/jns/2008/108/4/0764
- Kinoshita M, de Champfleur N, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H. Role of fronto-striatal tract and frontal aslant tract in movement and speech: An axonal mapping study. Brain Struct Funct. 2015;220(6):3399-412. https:// doi.org/10.1007/s00429-014-0863-0
- Bozkurt B, Yagmurlu K, Middlebrooks E, Karadag A, Ovalioglu T, Jagadeesan B. The Microsurgical and tractographic anatomy of the supplementary motor area complex in human. World Neurosurgery. 2016;95:99-107. https://doi. org/10.1016/j.wneu.2016.07.072
- Yagmurlu K, Middlebrooks E, Tanriover N, Rhoton A. Fiber tracts of the dorsal language stream in the human brain. Journal of Neurosurgery. 2015;124(5):1396-405. https://doi.org/10.3171/2015.5.jns15455
- Zhang S, Ide J, Li C. Resting-state functional connectivity of the medial superior frontal cortex. Cerebral Cortex. 2012;22:99-111. https://doi.org/10.1093/ cercor/bhr088
- Xue G, Lu Z, Levin I, Bechara A. The impact of prior risk experiences on subsequent risky decision-making: the role of the insula. Neuroimage. 2010;50:709-16. https://doi.org/10.1016/j.neuroimage.2009.12.097
- Frank M, Samanta J, Moustafa A, Sherman S. Hold your horses: Impulsivity, deep brain stimulation, and medication in parkinsonism. Science. 2007;318:1309- 312. https://doi.org/10.1126/science.1146157
- Wise S. Corticospinal efferents of the supplementary sensorimotor area in relation to the primary motor area. Adv Neurol. 1996;70:57-69.
- Grogan A, Green D, Ali N, Crinion J, Price C. Structural correlates of semantic and phonemic fluency ability in first and second languages. Cerebr Cortex. 2019;19(11):2690-8. https://doi.org/10.1093/cercor/bhp023
- Sjöberg R, Stålnackea M, Andersson M, Eriksson J. The supplementary motor area syndrome and cognitive control. Neuropsychologia. 2019;129:141-5. https://doi.org/10.1016/j.neuropsychologia.2019.03.013
- Thiebaut de Schotten M, Dell'Acqua F, Valabregue R, Catani M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex. 2012;48:82-96. https://doi.org/10.1016/j.cortex.2011.10.001
- Dick A, Bernal B, Tremblay P. The language connectome: New pathways, new concepts. Neuroscientist. 2014;20:453-67. https://doi. org/10.1177/1073858413513502
- Vassal F, Boutet C, Lemaire J, Nuti C. New insights into the functional significance of the frontal aslant tract – an anatomo-functional study using intraoperative electrical stimulations combined with diffusion tensor imagingbased fiber tracking. British Journal of Neurosurgery. 2014;28:685-7. https:// doi.org/10.3109/02688697.2014.889810
- Kinoshita M, Shinohara H, Hori O, Ozaki N, Ueda F, Nakada M, et al. Association fibers connecting the Broca center and the lateral superior frontal gyrus: A microsurgical and tractographic anatomy. J Neurosurg. 2012;116(2):323-30. https://doi.org/10.3171/2011.10.JNS11434
- Catani M, Mesulam M, Jakobsen E, Malik F, Martersteck A, Wieneke C, et al. A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136(Pt8):2619-28. https://doi.org/10.1093/brain/awt163
- Catani M, Dell'acqua F, Vergani F, Malik F, Hodge H, Roy P, et al. Short frontal lobe connections of the human brain. Cortex. 2012;48(2):273-91. https://doi. org/10.1016/j.cortex.2011.12.001
- Narayana S, Laird A, Tandon N, Franklin C, Lancaster J, Fox P. Electrophysiological and functional connectivity of the human supplementary motor area. NeuroImage. 2012;62:250-65. https://doi.org/10.1016/j.neuroimage.2012.04.060
- . Vergara J, Rivera N, Rossi-Pool R, Romo R. A neural parametric code for storing information of more than one sensory modality in working memory. Neuron. 2016;89:54-62. https://doi.org/10.1016/j.neuron.2015.11.026
- Tanji J. Sequential organization of multiple movements: Involvement of cortical motor areas. Annu Rev Neurosci. 2001;24:631-51. https://doi.org/10.1146/ annurev.neuro.24.1.631
- Shima K, Tanji J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. J Neurophysiol. 2000;84:2148-60. https://doi.org/10.1152/jn.2000.84.4.2148
- Wymbs N, Grafton S. Contributions from the left PMd and the SMA during sequence retrieval as determined by depth of training. Exp Brain Res. 2013;224(1):49-58. https://doi.org/10.1007/s00221-012-3287-1
- Klein P, Duque J, Labruna L, Ivry R. Comparison of the two cerebral hemispheres in inhibitory processes operative during movement preparation. NeuroImage. 2016;125:220-32. https://doi.org/10.1016/j.neuroimage.2015.10.007
- Jahanshahi M, Jenkins H, Brown R, Marsden D, Passingham R, Brooks D. Selfinitiated versus externally triggered movements. I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson’s disease subjects. Brain. 1995;118:913-33. https://doi.org/10.1093/brain/118.4.913
- Grezes J, Decety J. Does visual perception of object afford action? Evidence from a neuroimaging study. Neuropsychologia. 2002;40:212-22. https://doi. org/10.1016/s0028-3932(01)00089-6
- Tanji J, Shima K. Role for supplementary motor area cells in planning several movements ahead. Nature. 1994;371:413-16. https://doi. org/10.1038/371413a0
- Shima K, Mushiake H, Saito N, Tanji J. Role for cells in the presupplementary motor area in updating motor plans. Proc Natl Acad. Sci. 1996;93:8694-98. https://doi.org/10.1073/pnas.93.16.8694
- Isoda M, Tanji J. Participation of the primate presupplementary motor area in sequencing multiple saccades. J Neurophysiol. 2004;92:653-5. https://doi. org/10.1152/jn.01201.2003
- . Hikosaka O, Sakai K, Miyauchi S, Takino R, Sasaki Y, Putz B. Activation of human presupplementary motor area in learning of sequential procedures: A functional MRI study. J Neurophysiol. 1996;76(1):617-21. https://doi. org/10.1152/jn.1996.76.1.617
- Nakamura K, Sakai K, Hikosaka O. Neuronal activity in medial frontal cortex during learning of sequential procedures. J Neurophysiol. 1998;80(5):2671-87. https://doi.org/10.1152/jn.1998.80.5.2671
- Halsband U, Lange R. Motor learning in man: A review of functional and clinical studies. J Physiol Paris. 2006;99(4-6):414-24. https://doi.org/10.1016/j. jphysparis.2006.03.007.
- Nachev P, Wydell H, O’Neill K, Husain M, Kennard C. The role of the pre-supplementary motor area in the control of action. Neuroimage. 2007;36:T155-T163. https://doi.org/10.1016/j.neuroimage.2007.03.034
- Coull J, Cheng R, Meck W. Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology. 2011;36:3-25. https://doi.org/10.1038/ npp.2010.113
- Coull J, Charras P, Donadieu M, Droit-Volet S, Vidal F. Sma selectively codes the active accumulation of temporal, not spatial, magnitude. J Cogn Neurosci. 2015;27(11):2281-98. https://doi.org/10.1162/jocn_a_00854
- Coull J, Vidal F, Burle B. When to act, or not to act: That’s the SMA’s question. Curr Opin Neurobiol. 2016;8:1-8. https://doi.org/10.1016/j.cobeha.2016.01.003
- Wiener M, Turkeltaub P, Coslett H. The image of time: A voxel-wise metaanalysis. Neuroimage. 2010;49(2);1728-40. https://doi.org/10.1016/j. neuroimage.2009.09.064
- Schwartze M, Rothermich K, Kotz S. Functional dissociation of pre-SMA and SMA-proper in temporal processing. Neuroimage. 2012;60(1):290-8. https:// doi.org/10.1016/j.neuroimage.2011.11.089
- Zacks J. Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience. 2008;20(1):1-19. https://doi.org/10.1162/ jocn.2008.20013
- Wood G, Nuerk H, Moeller K, Geppert B, Schnitker R, Weber J, et al. All for one but not one for all: How multiple number representations are recruited in one numerical task. Brain Res. 2008;1187(1):154-66. https://doi.org/10.1016/j. brainres.2007.09.094
- Fehr T, Code C, Herrmann M. Common brain regions underlying different arithmetic operations as revealed by conjunct fMRI-BOLD activation. Brain Res. 2007;1172(1):93-102. https://doi.org/10.1016/j.brainres.2007.07.043
- Fehr T. A hybrid model for the neural representation of complex mental processing in the human brain. Cognit Neurodyn. 2013;7(2):89-103. https:// doi.org/10.1007/s11571-012-9220-2
- Tsai C, Chen C, Chou T, Chen J. Neural mechanisms involved in the oral representation of percussion music: An fMRI study. Brain Cogn. 2010;74(2):123- 31. https://doi.org/10.1016/j.bandc.2010.07.008
- Donnay G, Rankin S, Lopez-Gonzalez M, Jiradejvong P, Limb C. Neural substrates of interactive musical improvisation: An fMRI study of ‘‘trading fours” in jazz. PLoS One. 2014;3:e88665. https://doi.org/10.1371/journal.pone.0088665
- Meister I, Krings T, Foltys H, Boroojerdi B, Muller M, Topper R, et al. Playing piano in the mind – an fMRI study on music imagery and performance in pianists. Cogn Brain Res. 2004;19(3):219-28. https://doi.org/10.1016/j. cogbrainres.2003.12.005
- Baumann S, Koeneke S, Schmidt C, Meyer M, Lutz K, Jancke L. A network for audio-motor coordination in skilled pianists and non-musicians. Brain Res. 2007;1161(1):65-78. https://doi.org/10.1016/j.brainres.2007.05.045
- Rottschy C, Langner R, Dogan I, Reetz K, Laird A, Schulz J, et al. Modelling neural correlates of working memory: A coordinate-based meta-analysis. Neuroimage. 2012;60(1):830-46. https://doi.org/10.1016/j.neuroimage.2011.11.050
- Langner R, Sternkopf M, Kellermann T, Grefkes C, Kurth F, Schneider F, et al. Translating working memory into action: Behavioral and neural evidence for using motor representations in encoding visuo-spatial sequences. Human Brain Mapping. 2014;35(7):3465-84. https://doi.org/10.1002/hbm.22415
- Bledowski C, Kadosh K, Wibral M, Rahm B, Bittner R, Hoechstetter K, et al. Mental chronometry of working memory retrieval: A combined functional magnetic resonance imaging and event-related potentials approach. J Neurosci. 2006;26(3):821-9. https://doi.org/10.1523/jneurosci.3542-05.2006
- Hertrich I, Dietrich S, Ackermann H. The role of the supplementary motor area for speech and language processing. Neuroscience & Biobehavioral Reviews. 2016;68:602-10. https://doi.org/10.1016/j.neubiorev.2016.06.030
- Brendel B, Hertrich I, Erb M, Lindner A, Riecker A, Grodd W. The contribution of mesiofrontal cortex to the preparation and execution of repetitive syllable productions: An fMRI study. NeuroImage. 2010;50:1219-30. https://doi. org/10.1016/j.neuroimage.2010.01.039
- Segaert K, Menenti L, Weber K, Petersson K, Hagoort P. Shared syntax in language production and language comprehension – An fMRI study. Cereb Cortex. 2012;22(7):1662-70. https://doi.org/10.1093/cercor/bhr249
- Conaa G, Semenzaa C. Supplementary motor area as key structure for domaingeneral sequence processing: A unified account. Neuroscience and Biobehavioral Reviews. 2017;72:28-42. https://doi.org/10.1016/j.neubiorev.2016.10.033
- Duffau H, Capelle L. Preferential brain locations of low-grade gliomas. Cancer. 2004;100:2622-6. https://doi.org/10.1002/cncr.20297
- Chassagnon S, Minotti L, Kremer S, Hoffmann D, Kahane P. Somatosensory, motor, and reaching/grasping responses to direct electrical stimulation of the human cingulate motor areas. J Neurosurg. 2008;109:593-604. https://doi. org/10.3171/JNS/2008/109/10/0593
- Mohebi N, Arab M, Moghaddasi M, Ghader B, Emamikhah M. Stroke in supplementary motor area mimicking functional disorder: A case report. J Neurol. 2019;266:2584-6. https://doi.org/10.1007/s00415-019-09479-7
- Minshew N, Keller T. The nature of brain dysfunction in autism: Functional brain imaging studies. Curr Opin Neurol. 2010;23:124-30. https://doi.org/10.1097/ wco.0b013e32833782d4
- Lu C, Peng D, Chen C, Ning N, Ding G, Li K, et al. Altered effective connectivity and anomalous anatomy in the basal gangliathalamocortical circuit of stuttering speakers. Cortex. 2010;46:49-67. https://doi.org/10.1016/j. cortex.2009.02.017
- Young J, Gogos A, Aabedi A, Morshed R, Pereira M, Lashof-Regas S, et al. Resection of supplementary motor area gliomas: Revisiting supplementary motor syndrome and the role of the frontal aslant tract. J Neurosurg. 2021;1-7. https://doi.org/10.3171/2021.4.JNS21187
- Kasasbeh A, Yarbrough K, Limbrick D, Steger-May K, Leach J, Mangano F, et al. Characterization of the supplementary motor area syndrome and seizure outcome after medial frontal lobe resections in pediatric epilepsy surgery. Neurosurgery. 2012;70:1152-68. https://doi.org/10.1227/neu.0b013e31823f6001
- Fontaine D, Capelle L, Duffau H. Somatotopy of the supplementary motor area: Evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery. 2002;50(2):297-303. https://doi. org/10.1227/00006123-200202000-00011
- Della Sala S, Francescani A, Spinnler H. Gait apraxia after bilateral supplementary motor area lesion. J Neurol Neurosurg Psychiatry. 2002;72:77-85. https://doi. org/10.1136/jnnp.72.1.77
- Feinberg T, Schindler R, Flanagan N, Haber L. Two alien hand syndromes. Neurology. 1992;42:19-24. https://doi.org/10.1212/wnl.42.1.19
- Boccardi E, Della Sala S, Motto C, Spinnler H. Utilisation behaviour consequent to bilateral SMA softening. Cortex. 2002;38:289-308. https://doi.org/10.1016/ s0010-9452(08)70661-0
- Ziegler W, Kilian B, Deger K. The role of the left mesial frontal cortex in fluent speech: Evidence from a case of left supplementary motor area hemorrhage. Neuropsychologia. 1997;35:1197-208. https://doi.org/10.1016/s0028- 3932(97)00040-7
- Mendez M. Aphemia-like syndrome from a right supplementary motor area lesion. Clinical Neurology and Neurosurgery. 2004;106:337-9. https://doi. org/10.1016/j.clineuro.2003.12.008
- Chainay H, Alario F, Krainik A, Duffau H, Capelle L, Volle E, et al. Motor and language deficits before and after surgical resection of mesial frontal tumour. Clinical Neurology and Neurosurgery. 2009;111:39-46. https://doi. org/10.1016/j.clineuro.2008.07.004
- Acioly MA, Cunha AM, Parise M, Rodrigues E, Tovar-Moll F. Recruitment of contralateral supplementary motor area in functional recovery following medial frontal lobe surgery: An fMRI case study. Journal of Neurological Surgery Part A – Central European Neurosurgery. 2015;76:508-12. https://doi. org/10.1055/s-0035-1558408
- Rubens A. Aphasia with infarction in the territory of the anterior cerebral artery. Cortex. 1975;11:239-50. https://doi.org/10.1016/s0010-9452(75)80006-2
- Ardila A, Lopez M. Transcortical motor aphasia: One or two aphasias? Brain and Language. 1984;22(2):350-3. https://doi.org/10.1016/0093-934x(84)90099-3
- Ardila A. A proposed reinterpretation and reclassification of aphasic syndromes. Aphasiology. 2010;24(3):363-94. https://doi. org/10.1080/02687030802553704
- Lahiri D, Dubey S, Ardila A, Sawale V, Roy B, Sen S, et al. Incidence and types of aphasia after first-ever acute stroke in Bengali speakers: Age, gender, and educational effect on the type of aphasia. Aphasiology. 2020;34:709-22. https://doi.org/10.1080/02687038.2019.1630597
- Ardila A. Supplementary motor area aphasia revisited. Journal of Neurolinguistics. 2020;54:100888. https://doi.org/10.1016/j.jneuroling.2020.100888
- Berthier M, Dávila G, Moreno-Torres I, Beltran-Corbellini A, Santana-Moreno D, Roe-Vellve N, et al. Loss of regional accent after damage to the speech production network. Frontiers in Human Neuroscience. 2015;9:610. https:// doi.org/10.3389/fnhum.2015.00610
- Kronfeld-Duenias V, Amir O, Ezrati-Vinacour R, Civier O, Ben-Shachar M. The frontal aslant tract underlies speech fluency in persistent developmental stuttering. Brain Structure and Function. 2016;221(1):365-81. https://doi. org/10.1007/s00429-014-0912-8
- Basilakos A, Fillmore P, Rorden C, Guo D, Bonilha L, Fridriksson J. Regional white matter damage predicts speech fluency in chronic post-stroke aphasia. Front Hum Neurosci. 2014;8:845. https://doi.org/10.3389/fnhum.2014.00845
- Cañas A, Juncadella M, Lau R, Gabarros A, Hernandez M. Working memory deficits after lesions involving the supplementary motor area. Front Psychol. 2018;9:765. https://doi.org/10.3389/fpsyg.2018.00765
- Wu S, Maloney T, Gilbert D, Dixon S, Horn P, Huddleston D, et al. Functional MRInavigated repetitive transcranial magnetic stimulation over supplementary motor area in chronic tic disorders. Brain Stimul. 2014;7:212-8. https://doi. org/10.1016/j.brs.2013.10.005
- D’Urso G, Brunoni A, Mazzaferro M, Anastasia A, Bartolomeis A, Mantovani A. Transcranial direct current stimulation for obsessive compulsive disorder: A randomized, controlled, partial crossover trial. Depress Anxiety. 2016;33:1132- 40. https://doi.org/10.1002/da.22578
- Shirota Y, Ohtsu H, Hamada M, Enomoto H, Ugawa Y. Supplementary motor area stimulation for Parkinson disease: A randomized controlled study. Neurology. 2013;80:1400-5. https://doi.org/10.1212/wnl.0b013e31828c2f66
- Grafton S. Contributions of functional imaging to understanding parkinsonian symptoms. Curr Opin Neurobiol. 2004;14:715-9. https://doi.org/10.1016/j. conb.2004.10.010
- Haslinger B, Erhard P, Kampfe N, Boecker H, Rummeny E, Schwaiger M, et al. Event-related functional magnetic resonance imaging in Parkinson’s disease before and after levodopa. Brain. 2001;124:558-70. https://doi.org/10.1093/ brain/124.3.558
- Grafton S, Turner R, Desmurget M, Bakay R, Delong M, Vitek J, et al. Normalizing motor-related brain activity: Subthalamic nucleus stimulation in Parkinson disease. Neurology. 2006;66:1192-9. https://doi.org/10.1212/01. wnl.0000214237.58321.c3
- MacDonald V, Halliday G. Selective loss of pyramidal neurons in the presupplementary motor cortex in Parkinson’s disease. Mov Disord. 2002;17:1166- 73. https://doi.org/10.1002/mds.10258
- Hamada M, Ugawa Y, Tsuji S. High-frequency rTMS over the supplementary motor area for treatment of Parkinson’s disease. Mov Disord. 2008;23:1524- 31. https://doi.org/10.1002/mds.22168
- Cerasa A, Koch G, Donzuso G, Mangone G, Morelli M, Brusa L, et al. A network centred on the inferior frontal cortex is critically involved in levodopa-induced dyskinesias. Brain. 2014;138:414-27. https://doi.org/10.1093/brain/awu329
Authors' information:
Alekseev Ivan Maksimovich,
Neurosurgeon, Postgraduate Student of the Department of Neurosurgery of the Institute for Postgraduate Medical Education, Pirogov National Medical and Surgical Center
ORCID ID: 0000-0001-8107-3065
E-mail: alexeev.im@yandex.ru
Zuev Andrey Aleksandrovich,
Doctor of Medical Sciences, Head of the Department of Neurosurgery of the Institute for Postgraduate Medical Education, Pirogov National Medical and Surgical Center
ORCID ID: 0000-0003-2974-1462
E-mail: mosbrain@gmail.com
Information about support in the form of grants, equipment, medications
The authors did not receive financial support from manufacturers of medicines and medical equipment
Conflicts of interest: No conflict
Address for correspondence:
Alekseev Ivan Maksimovich
Neurosurgeon, Postgraduate Student of the Department of Neurosurgery of the Institute for Postgraduate Medical Education, Pirogov National Medical and Surgical Center
105203, Russian Federation, Moscow, Nizhnyaya Pervomayskaya str., 70
Tel.: +7 (918) 5844004
E-mail: alexeev.im@yandex.ru
Materials on the topic:
- BIOMECHANICAL COMPARISON OF TRANSPEDICULAR FIXATION METHODS UNDER ROTATIONAL LOADING FOR OPTIMIZING SURGERY ON THE THORACOLUMBAR JUNCTION OF THE SPINE
- MICROSURGICAL TREATMENT OF DISTAL POSTERIOR INFERIOR CEREBELLAR ARTERY ANEURYSM DURING THE COLD PERIOD AFTER SPONTANEOUS INTRACRANIAL HEMORRHAGE: A CASE REPORT
- EXTERNAL VENTRICULAR DRAINAGE FOR MALIGNANT ISCHEMIC STROKE: A CASE REPORT
- IMMUNE RESISTANCE VIA A PD-1/PD-L1 MECHANISM IN GLIOBLASTOMA
- DECOMPRESSIVE HEMICRANIECTOMY AFTER UNSUCCESSFUL INTRAVENOUS THROMBOLYSIS OF MALIGNANT MIDDLE CEREBRAL ARTERY INFARCTION: A CASE REPORT
- INTRADURAL HYPOGLOSSAL SCHWANNOMA WITHOUT HYPOGLOSSAL PARALYSIS AND TONGUE ATROPHY: A CASE STUDY AND LITERATURE REVIEW
- A CASE OF SUCCESSFUL OPEN SURGICAL TREATMENT OF A GIANT ANEURISM OF THE SUPRACLINOID SEGMENT OF THE INTERNAL CAROTID ARTERY
- MODERN APPROACHES IN THE DIAGNOSIS AND TREATMENT OF CEREBROVASCULAR DISEASES
- SURGICAL TREATMENT OF PATIENTS WITH MULTIPLE INTRACRANIAL ANEURYSMS AND ACUTE SEVERE SUBARACHNOID HEMORRHAGE
- DEVELOPMENT AND PRACTICAL APPLICATION OF AN ORIGINAL METHOD OF MONITORING THE PATENCY OF THE SPINAL SPACES DURING THE REMOVAL OF LUMBOSACRAL LIPOMA