Neurosurgery
doi: 10.25005/2074-0581-2023-25-4-509-519
IMMUNE RESISTANCE VIA A PD-1/PD-L1 MECHANISM IN GLIOBLASTOMA
1Almazov National Medical Research Centre, St. Petersburg, Russian Federation
2Polenov Russian Neurosurgical Institute, St. Petersburg, Russian Federation
3St. Petersburg Institute of Nuclear Physics named after B.P. Konstantinov, National Research Center «Kurchatov Institute», St. Petersburg, Russian Federation
Methods: Immunotherapy is a treatment option that is becoming more common for different types of cancer. The idea behind this therapy is to modify the patient's immune system. One type of this therapy involves blocking the binding between PD-1 and PD-L1. By doing so, it enables increased antitumor immune activity. Immune checkpoint inhibitors have shown significant efficacy with high response rates and long-term remission in various types of cancer. Glioblastoma (GBM) is a recurrent tumor characterized by immune evasion mechanisms that resist modern immunotherapy. The literature review analyzed the mechanism of tumor resistance to immune response, specifically PD-1 and PD-L1 expression in GBM. The review presented several clinical studies that showed the results of using immune checkpoint inhibitors in GBM patients. Additionally, the review described other mechanisms of tumor resistance to the activated immune system. All sources were selected using specialized scientific retrieval systems and full-text databases such as Google Scholar, eLIBRARY, PubMed, and Elsevier.
Keywords: Glioblastoma, immunotherapy, immune modulation, immune checkpoint inhibitors, PD-1, PD-L1.
References
- Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021;23(8):1231-51. https://doi.org/10.1007/s00401-016-1545- 1
- Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJB, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459- 66. https://doi.org/10.1016/S1470-2045(09)70025-7
- Gilbert MR, Wang M, Aldape KD, Stupp R, Hegi ME, Jaeckle KA, et al. Dosedense temozolomide for newly diagnosed glioblastoma: A randomized phase III clinical trial. J Clin Oncol. 2013;31(32):4085-91. https://doi.org/10.1200/ JCO.2013.49.6968
- Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65:185-202. https://doi. org/10.1146/annurev-med-092012-112807
- Sklyar SS, Trashkov AP, Matsko MV, Safarov BI, Vasiliev AG. Immunnyy otvet na pervichnuyu glioblastomu [Immune response to primary glioblastoma]. Pediatr. 2022;13(2):49-60. https://doi.org/10.17816/PED13249-602022
- Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevich J, et al. Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys. 2013;86(2):343-9. https://doi. org/10.1016/j.ijrobp.2012.12.025
- Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res. 2008;14(16):5166-72. https://doi.org/10.1158/1078- 0432.CCR-08-0320
- Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin Cancer Res. 2014;20(20):5290-301. https://doi.org/10.1158/1078-0432.CCR-14-0514
- Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res. 2013;19(12):3165-75. https://doi. org/10.1158/1078-0432.CCR-12-3314
- Berghoff AS, Kiesel B, Widhalm G, Rajky O, Ricken G, Wohrer A, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17(8):1064-75. https://doi.org/10.1093/neuonc/ nou307
- Chemnitz JM, Parry RV, Nichols KE, June CH, Riley JL. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J Immunol. 2004;173:945-54. https://doi.org/10.4049/jimmunol.173.2.945
- Jiang Y, Chen M, Nie H, Yuan Y. PD-1 and PD-L1 in cancer immunotherapy: Clinical implications and future considerations. Human Vaccines & Immunotherapeutics. 2019;15:1111-22. https://doi.org/10.1080/21645515.2019.1571892
- Thomas AA, Ernstoff MS, Fadul CE. Immunotherapy for the treatment of glioblastoma. Cancer J. 2012;18(1):59-68. https://doi.org/10.1097/ PPO.0b013e3182431a73
- Litak J, Mazurek M, Grochowski C, Kamieniak P, Rolinski J. PD-L1/PD-1 axis in glioblastoma multiforme. International Journal of Molecular Sciences. 2019;20(21):5347. https://doi.org/10.3390/ijms20215347
- Semiglazov VF, Tseluyko AI, Baldueva IA, Nekhaeva TL, Artemieva AS, Kudaybergenova AG, i dr. Immunologiya i immunoterapiya v kompleksnom lechenii zlokachestvennykh opukholey [Immunology and immunotherapy in the complex treatment of malignant tumors]. Meditsinskiy sovet. 2021;4:248-57. https://doi.org/10.21518/2079-701X-2021-4-248-257
- Filley AC, Henriquez M, Dey M. Recurrent glioma clinical trial, checkmate-143: The game is not over yet. Oncotarget. 2017;8(53):91779-94. https://doi. org/10.18632/oncotarget.21586
- Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Ravel RR, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro Oncol. 2022;24(11):1935-49. https://doi.org/10.1093/neuonc/noac116
- Woroniecka K, Fecci PE. Immuno-synergy? Neoantigen vaccines and checkpoint blockade in glioblastoma. Neuro Oncol. 2020;22(9):1233-4. https://doi. org/10.1093/neuonc/noaa170
- de la Fuente MI, Colman H, Rosenthal M, van Tine BA, Levacic D, Walbert T, et al. A phase Ib/II study of olutasidenib in patients with relapsed/refractory IDH1mutant gliomas: Safety and efficacy as single agent and in combination with azacitidine. J Clin Oncol. 2020;38:2505. https://doi.org/10.1200/ JCO.2020.38.15_suppl.2505
- De Groot JF, Penas-Prado M, Mandel JJ, O’Brien BJ, Weathers SS, Zhou S, et al. Window-of-opportunity clinical trial of a PD-1 inhibitor in patients with recurrent glioblastoma. J Clin Oncol. 2018;36:2008. https://doi.org/10.1200/ JCO.2018.36.15_suppl.2008
- Jacques FH, Nicholas G, Lorimer IAJ, Foko VS, Prevost J, Dumais N, et al. Avelumab in newly diagnosed glioblastoma. Neurooncol Adv. 2021;3(1):vdab118. https://doi.org/10.1093/noajnl/vdab118
- Sanborn RE, Pishvaian MJ, Callahan MK, Weise A, Sikic BI, Rahma O, et al. Safety, tolerability and efficacy of agonist anti-CD27 antibody (varlilumab) administered in combination with anti-PD-1 (nivolumab) in advanced solid tumors. J Immunother Cancer. 2022;10(8):e005147. https://doi.org/10.1136/jitc-2022- 005147
- Giesinger JM, Kieffer JM, Fayers PM, Groenvold M, Petersen MA, Scott NW, et al. Replication and validation of higher order models demonstrated that a summary score for the EORTC QLQ-C30 is robust. J Clin Epidemiol. 2016;69:79- 88. https://doi.org/10.1016/j.jclinepi.2015.08.007
- Reardon DA, De Groot J, Colman H, Jordan J, Daras M, Clarke JL, et al. Safety of pembrolizumab in combination with bevacizumab in recurrent glioblastoma (rGBM). J Clin Oncol. 2016;34:2010. https://doi.org/10.1200/JCO.2016.34.15_ suppl.2010
- Nejo T, Mende A, Okada H. The current state of immunotherapy for primary and secondary brain tumors: Similarities and differences. Japanese Journal of Clinical Oncology. 2020;50(11):1231-45. https://doi.org/10.1093/jjco/hyaa164
- Quail DF, Joyce JA. The microenvironmental landscape of brain Tumors. Cancer Cell. 2017;31(3):326-41. https://doi.org/10.1016/j.ccell.2017.02.009
- Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, et al. Glioblastoma eradication following immune checkpoint blockade in an Orthotopic. Immunocompetent Model Cancer Immunol Res. 2016;4(2):124-35. https://doi.org/10.1158/2326-6066.CIR-15-0151
- Antunes ARP, Scheyltjens I, Duerinck J, Neyns B, Movahedi K, Ginderachter JAV. Understanding the glioblastoma immune microenvironment as basis for the development of new immunotherapeutic strategies. ELife. 2020;9:e52176. https://doi.org/10.7554/eLife.52176
- Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477-86. https://doi.org/10.1038/s41591-018-0337-7
- Yu MW, Quail DF. Immunotherapy for glioblastoma: Current progress and challenges. Front Immunol. 2021;12:676301. https://doi.org/10.3389/fimmu.2021.676301
- Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA. 2013;110(10):4009-14. https://doi. org/10.1073/pnas.1219747110
- Sampson JH, Gunn MD, Fecci PE, Ashley DM. Brain immunology and immunotherapy in brain tumours. Nat Rev Cancer. 2020;20(1):12-25. https://doi. org/10.1038/s41568-019-0224-7
- Bausart M, Preat V, Malfani A. Immunotherapy for glioblastoma: The promise of combination strategies. J Exp Clin Cancer Res. 2022;41:35. https://doi. org/10.1186/s13046-022-02251-2
- Perng P, Lim M. Immunosuppressive mechanisms of malignant gliomas: Parallels at non CNS sites. Front Oncol. 2015;5:153. https://doi.org/10.3389/ fonc.2015.00153
- Jackson CM, Choi J, Lim M. Mechanisms of immunotherapy resistance: Lessons from glioblastoma. Nature Immunology. 2019;20(9):1100-9. https://doi.org/ doi.org/10.1038/s41590-019-0433-y
- Giles AJ, Hutchinson M-KND, Sonnemann HM, Jung J, Fecci PE, Ratman NM, et al. Dexamethasone-induced immunosuppression: Mechanisms and implications for immunotherapy. J Immunother Cancer. 2018;6(1):51. https://doi. org/10.1186/s40425-018-0371-5
Authors' information:
Kushnirova Viktoria Sergeevna,
Resident, Almazov National Medical Research Centre
Researcher ID: IQU-6826-2023
ORCID ID: 0000-0003-0480-0884
SPIN: 9105-5852
E-mail: victoria.kushnitova@mail.ru
Sklyar Sofia Sergeevna,
Candidate of Medical Sciences, Neurosurgeon, Neurosurgery Department № 4, Polenov Russian Neurosurgical Institute
Researcher ID: AIF-1772-2022
Scopus ID: 57203173677
ORCID ID: 0000-0002-3284-9688
SPIN: 4679-3548
Author ID: 1037224
E-mail: s.sklyar2017@yandex.ru
Samochernykh Konstantin Aleksandrovich,
Doctor of Medical Sciences, Full Professor, Director of Polenov Russian Neurosurgical Institute
Researcher ID: AAS-7689-2020
Scopus ID: 24280115200
ORCID ID: 0000-0003-0350-0249
SPIN: 4188-8657
Author ID: 552872
E-mail: samochernykh_ka@almazovcentre.ru
Trashkov Aleksandr Petrovich,
Candidate of Medical Sciences, Head of the Center for Preclinical and Clinical Research, St. Petersburg Institute of Nuclear Physics named after B.P. Konstantinov, National Research Center «Kurchatov Institute»
Researcher ID: E-9576-2016
Scopus ID: 56146528000
ORCID ID: 0000-0002-3441-0388
SPIN: 4231-1258
Author ID: 546313
E-mail: alexandr.trashkov@gmail.com
Safarov Bobir Ibragimovich,
Candidate of Medical Sciences, Head of the Neurosurgery Department № 4, Polenov Russian Neurosurgical Institute
Scopus ID: 16444663000
ORCID ID: 0000-0002-2369-7424
Author ID: 430361
E-mail: safarovbob@mail.ru
Information about support in the form of grants, equipment, medications
The authors did not receive financial support from manufacturers of medicines and medical equipment
Conflicts of interest: No conflict
Address for correspondence:
Sklyar Sofia Sergeevna
Candidate of Medical Sciences, Neurosurgeon, Neurosurgery Department № 4, Polenov Russian Neurosurgical Institute
191014, Russian Federation, St. Petersburg, Mayakovskogo str., 12
Tel.: +7 (952) 2331862
E-mail: s.sklyar2017@yandex.ru
Materials on the topic:
- BIOMECHANICAL COMPARISON OF TRANSPEDICULAR FIXATION METHODS UNDER ROTATIONAL LOADING FOR OPTIMIZING SURGERY ON THE THORACOLUMBAR JUNCTION OF THE SPINE
- MICROSURGICAL TREATMENT OF DISTAL POSTERIOR INFERIOR CEREBELLAR ARTERY ANEURYSM DURING THE COLD PERIOD AFTER SPONTANEOUS INTRACRANIAL HEMORRHAGE: A CASE REPORT
- EXTERNAL VENTRICULAR DRAINAGE FOR MALIGNANT ISCHEMIC STROKE: A CASE REPORT
- DECOMPRESSIVE HEMICRANIECTOMY AFTER UNSUCCESSFUL INTRAVENOUS THROMBOLYSIS OF MALIGNANT MIDDLE CEREBRAL ARTERY INFARCTION: A CASE REPORT
- INTRADURAL HYPOGLOSSAL SCHWANNOMA WITHOUT HYPOGLOSSAL PARALYSIS AND TONGUE ATROPHY: A CASE STUDY AND LITERATURE REVIEW
- SUPPLEMENTARY MOTOR AREA AND CLINICAL PICTURE OF ITS LESION
- A CASE OF SUCCESSFUL OPEN SURGICAL TREATMENT OF A GIANT ANEURISM OF THE SUPRACLINOID SEGMENT OF THE INTERNAL CAROTID ARTERY
- MODERN APPROACHES IN THE DIAGNOSIS AND TREATMENT OF CEREBROVASCULAR DISEASES
- SURGICAL TREATMENT OF PATIENTS WITH MULTIPLE INTRACRANIAL ANEURYSMS AND ACUTE SEVERE SUBARACHNOID HEMORRHAGE
- DEVELOPMENT AND PRACTICAL APPLICATION OF AN ORIGINAL METHOD OF MONITORING THE PATENCY OF THE SPINAL SPACES DURING THE REMOVAL OF LUMBOSACRAL LIPOMA