Plastic Surgery
doi: 10.25005/2074-0581-2024-26-3-478-487
USE OF ARTIFICIAL INTELLIGENCE TECHNOLOGIES IN THE SELECTION OF IMPLANTS FOR AUGMENTATION MAMMOPLASTY
1«AvisMed» Clinic, Novosibirsk, Russian Federation
2Medical Research and Educational Center of Lomonosov Moscow State University, Moscow, Russian Federation
3Huawei Russian Research Institute, Moscow, Russian Federation
Objective: To enhance the accuracy of predicting the outcomes of augmentation mammoplasty (AM).
Methods: The study involves a retrospective analysis of data from 265 patients satisfied with the AM results. Artificial intelligence (AI) was trained using numerical variables, such as anthropometric measurements and patient preferences, as input data, and the implant parameters were used as output data
Results: The machine learning (ML) algorithms supported clinicians in determining the optimal selection of implants in 81.5% of cases, indicating the practical applicability of the model.
Conclusion: The ML approach can improve accuracy in selecting the most appropriate implant type and size, considering a wide range of individual parameters and patient wishes.
Keywords: Augmentation mammoplasty, selection of implants, artificial intelligence, machine learning.
References
- Hillard C, Fowler JD, Barta R, Cunningham B. Silicone breast implant rupture: A review. Gland Surg. 2017;6(2):163-8. https://doi.org/10.21037/gs.2016.09.12
- Adams WP, Mckee D. Matching the implant to the breast. Plast Reconstr Surg. 2016;138(5):987-94. https://doi.org/10.1097/prs.0000000000002623
- Charles-de-Sá L, de Aguiar Valladão T, Vieira DML, Aboudib JH. Anthropometric aspects in the breast augmentation. Aesthetic Plast Surg. 2020;44(5):1498- 507. https://doi.org/10.1007/s00266-020-01853-5
- Hidalgo DA, Spector JA. Breast augmentation. Plast Reconstr Surg. 2014;133(4):567e-583e. https://doi.org/10.1097/PRS.0000000000000033
- Hamet P, Tremblay J. Artificial intelligence in medicine. Metabolism. 2017;69S:S36-S40. https://doi.org/10.1016/j.metabol.2017.01.011
- Safronov ID. Teoreticheskie osnovy v modeli mashinnogo obucheniya [Theoretical basics in machine learning model]. Vestnik nauki. 2023;63(6):1050-3.
- Syomin PO. Pravovye aspekty iskusstvennogo intellekta i smezhnyh tehnologiy: prava na kontent, sozdannyy s pomoshch'yu mashinnogo obucheniya [Legal aspects of artificial intelligence and related technologies: Rights to content created using machine learning.] Zhurnal Suda po intellektual'nym pravam. 2022;2(36):21-32.
- Murphy DC, Saleh DB. Artificial Intelligence in plastic surgery: What is it? Where are we now? What is on the horizon? Ann R Coll Surg Engl. 2020;102(8):577- 80. https://doi.org/10.1308/rcsann.2020.0158
- Bates S, Hastie T, Tibshirani R. Cross-validation: what does it estimate and how well does it do it? Journal of the American Statistical Association. 2023. Available from: https://www.tandfonline.com/doi/full/10.1080/01621459.2023.21 97686 [Accessed 5th March 2024]. https://doi.org/10.1080/01621459.2023. 2197686
- Rabinowicz A, Rosset S. Tree-based models for correlated data. The Journal of Machine Learning Research. 2022;23(258):1-31. https://doi.org/10.48550/ arXiv.2102.08114
- Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel, et al. Scikitlearn: Machine Learning in Python. Journal of Machine Learning Research. 2011;12:2825-30. https://doi.org/10.48550/arXiv.1201.0490
- Prokhorenkova LO, Prałat P, Raigorodskii A. Modularity in several random graph models. Electronic Notes in Discrete Mathematics. 2017;61:947-53. https://doi.org/10.1016/j.endm.2017.07.058
- Candela JQ, Sugiyama M, Schwaighofer A, Lawrence N. Dataset shift in machine learning. USA: The MIT Press; 2009. 229 p. https://doi.org/10.7551/MITPRESS/9780262170055.001.0001
Authors' information:
Atamanov Dmitriy Konstantinovich,
Plastic Surgeon, «AvisMed» Clinic
ORCID ID: 0000-0001-8878-1398
E-mail: dmi.atamanov@yandex.ru
Sapakova Amina Kamzaevna,
Junior Researcher, Medical Research and Educational Center of Lomonosov Moscow State University
ORCID ID: 0009-0000-1094-8725
E-mail: dr.amina.sapakova@mail.com
Egorov Vadim Anatolievich,
Doctor of Medical Sciences, Plastic Surgeon, Head of Plastic Surgery Department, «AvisMed» Clinic
ORCID ID: 0009-0009-6275-5701
E-mail: vadime899@mail.ru
Sedukhin Oleg Andreevich,
Leading Expert, Huawei Russian Research Institute
E-mail: sedol1339@gmail.com
Information about support in the form of grants, equipment, medications
The authors did not receive financial support from manufacturers of medicines and medical equipment
Conflicts of interest: No conflict
Address for correspondence:
Atamanov Dmitriy Konstantinovich
Plastic Surgeon, «AvisMed» Clinic
630005, Russian Federation, Novosibirsk, Krasnyy prospekt str., 86
Tel.: +7 (913) 2004138
E-mail: dmi.atamanov@yandex.ru
Materials on the topic:
- ONE-STAGE CORRECTION OF CHRONIC ULNAR NERVE INJURIES
- COMPREHENSIVE APPROACH TO SURGICAL TREATMENT OF NEUROTROPHIC FOOT ULCER BY LOCAL PLASTIC METHOD: CASE REPORT
- OXIDATIVE STRESS AND ANTIOXIDANT SYSTEM IN SEVERE UPPER LIMB INJURIES
- REPAIR OF SEVERE POST-BURN CICATRICIAL CONTRACTURES AND DEFORMATIONS OF THE LOWER LIMB
- ANALYSIS OF COMPLICATIONS AFTER AUTOGRAFT TRANSPLANTATION IN SEVERE UPPER LIMB INJURY
- A MODEL FOR ASSESSING THE RISK OF A DELAYED WOUND HEALING IN OBESE PATIENTS
- MAMMOPLASTY: FROM RECONSTRUCTIVE TO AESTHETIC SURGERY
- THE EFFECT OF THE MENSTRUAL CYCLE PHASE ON THE OUTCOME OF AUGMENTATION MAMMOPLASTY
- CORRECTION OF SOFT-TISSUE DEFECTS AND CONSEQUENCES OF NEUROVASCULAR BUNDLES DAMAGE OF THE UPPER EXTREMITIES
- SURGICAL TREATMENT OF POST-BURN CICATRICIAL DEFORMITIES OF WOMAN’S BREAST