ORIGINAL RESEARCH

Neurosurgery

doi: 10.25005/2074-0581-2024-26-2-190-202
BIOMECHANICAL COMPARISON OF TRANSPEDICULAR FIXATION METHODS UNDER ROTATIONAL LOADING FOR OPTIMIZING SURGERY ON THE THORACOLUMBAR JUNCTION OF THE SPINE

O.S. NEKHLOPOCHYN1, V.V. VERBOV2, I.V. CHESHUK2, M.V. VORODI2, M.YU. KARPINSKY3, O.V. YARESKO3

1Spine Surgery Department, Romodanov Neurosurgery Institute of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
2Restorative Neurosurgery Department, Romodanov Neurosurgery Institute of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
3Biomechanics Laboratory, Sytenko Institute of Spine and Joint Pathology of National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine

Objective: To analyze various transpedicular (TP) fixation options for the thoracolumbar junction (TLJ) under rotational loads.

Methods: A finite element model of the thoracolumbar spine was generated as part of a study. The model includes vertebrae Th9-Th11 and L2-L5 but excludes Th12 and L1. The model also integrates metallic structural elements, such as a vertebral body replacement (VBR) implant (interbody cage) and a TP system. We modeled the result of decompressive-stabilizing surgery for type C vertebral injuries (according to the classification scheme proposed by F. Magerl et al, 1994). The study analyzes four variants of TP fixation with different screw lengths and the influence of the presence or absence of transverse reinforcements.

Results: It was found that during rotational loading, the maximum stress in bone structures occurs at the contact surface between the VBRs and the endplates of both adjacent vertebrae to the removed ones. In metallic hardware, the highest stress is observed on the interbody cage and in the TP screws installed in the Th10 and Th11 vertebral bodies. A comparison of different stabilization options reveals that the TP system with short monocortical screws and without transverse reinforcements provides moderate levels of stress. The use of bicortical screws without crosslinks results in a significant increase in stress, especially at the contact surface in the vertebral endplates and the intervertebral support device. On the other hand, the use of transverse reinforcements with short screws reduces stress, providing an optimal stabilization option. However, bicortical screws with crosslinks did not show significant benefits.

Conclusion: Upon scrutinizing the biomechanical efficiency of different TP fixation methods, it has been determined that utilizing a TP system equipped with monocortical screws and two crosslinks results in the most even stress distribution caused by the rotational load.

Keywords: Thoracolumbar junction, burst fracture, transpedicular fixation, finite element analysis, rotational loading.

Download file:


References
  1. Sharif S, Shaikh Y, Yaman O, Zileli M. Surgical techniques for thoracolumbar spine fractures: WFNS Spine Committee Recommendations. Neurospine. 2021;18(4):667-80. https://doi.org/10.14245/ns.2142206.253
  2. Zhu Q, Shi F, Cai W, Bai J, Fan J, Yang H. Comparison of anterior versus posterior approach in the treatment of thoracolumbar fractures: A systematic review. International Surgery. 2015;100(6):1124-33. https://doi.org/10.9738/ INTSURG-D-14-00135.1
  3. Verlaan JJ, Diekerhof CH, Buskens E, van der Tweel I, Verbout AJ, Dhert WJ, et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: A systematic review of the literature on techniques, complications, and outcome. Spine (Phila Pa 1976). 2004;29(7):803-14. https://doi.org/10.1097/01. brs.0000116990.31984.a9
  4. Leucht P, Fischer K, Muhr G, Mueller EJ. Epidemiology of traumatic spine fractures. Injury. 2009;40(2):166-72. https://doi.org/10.1016/j.injury.2008.06.040
  5. Oliver M, Inaba K, Tang A, Branco BC, Barmparas G, Schnuriger B, et al. The changing epidemiology of spinal trauma: A 13-year review from a Level I trauma centre. Injury. 2012;43(8):1296-300. https://doi.org/10.1016/j. injury.2012.04.021
  6. Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, et al. AOSpine thoracolumbar spine injury classification system: Fracture description, neurological status, and key modifiers. Spine (Phila Pa 1976). 2013;38(23):2028- 37. https://doi.org/10.1097/BRS.0b013e3182a8a381
  7. Roy-Camille R, Saillant G, Mazel C. Internal fixation of the lumbar spine with pedicle screw plating. Clin Orthop Relat Res. 1986;203:7-17
  8. Altay M, Ozkurt B, Aktekin CN, Ozturk AM, Dogan O, Tabak AY. Treatment of unstable thoracolumbar junction burst fractures with short- or long-segment posterior fixation in magerl type a fractures. Eur Spine J. 2007;16(8):1145-55. https://doi.org/10.1007/s00586-007-0310-5
  9. Muller U, Berlemann U, Sledge J, Schwarzenbach O. Treatment of thora-columbar burst fractures without neurologic deficit by indirect reduction and posterior instrumentation: Bisegmental stabilization with mon-osegmental fusion. Eur Spine J. 1999;8(4):284-9. https://doi.org/10.1007/s005860050175
  10. Ugras AA, Akyildiz MF, Yilmaz M, Sungur I, Cetinus E. Is it possible to save one lumbar segment in the treatment of thoracolumbar fractures? Acta Orthopaedica Belgica. 2012;78(1):87-93.
  11. Xu HZ, Wang XY, Chi YL, Zhu QA, Lin Y, Huang QS, et al. Biomechani-cal evaluation of a dynamic pedicle screw fixation device. Clin Biomech (Bristol, Avon). 2006;21(4):330-6. https://doi.org/10.1016/j.clinbiomech.2005.12.004
  12. Aly TA. Short segment versus long segment pedicle screws fixation in management of thoracolumbar burst fractures: Meta-analysis. Asian Spine J. 2017;11(1):150-60. https://doi.org/10.4184/asj.2017.11.1.150
  13. Alimohammadi E, Bagheri SR, Joseph B, Sharifi H, Shokri B, Khodadadi L. Analysis of factors associated with the failure of treatment in thoracol-umbar burst fractures treated with short-segment posterior spinal fixation. Journal of Orthopaedic Surgery and Research. 2023;18(1):690. https://doi.org/10.1186/s13018- 023-04190-w
  14. Fradet L, Petit Y, Wagnac E, Aubin CE, Arnoux PJ. Biomechanics of thoracolumbar junction vertebral fractures from various kinematic conditions. Medical & Biological Engineering & Computing. 2014;52(1):87-94. https://doi.org/10.1007/ s11517-013-1124-8
  15. Verheyden AP, Spiegl UJ, Ekkerlein H, Gercek E, Hauck S, Josten C, et al. Treatment of fractures of the thoracolumbar spine: Recommendations of the Spine Section of the German Society for Orthopaedics and Trauma (DGOU). Global Spine J. 2018;8(2 Suppl):34S-45S. https://doi.org/10.1177/2192568218771668
  16. Akay KM, Baysefer A, Kayali H, Beduk A, Timurkaynak E. Fracture and lateral dislocation of the T12-L1 vertebrae without neurological deficit – case report. Neurol Med Chir (Tokyo). 2003;43(5):267-70. https://doi.org/10.2176/ nmc.43.267
  17. Matsuzaki H, Tokuhashi Y, Matsumoto F, Hoshino M, Kiuchi T, Toriya-ma S. Problems and solutions of pedicle screw plate fixation of lumbar spine. Spine (Phila Pa 1976). 1990;15(11):1159-65. https://doi.org/10.1097/00007632- 199011010-00014
  18. Cowin SC. Bone mechanics handbook. 2nd ed. Boca Raton, USA: CRC Press; 2001. 980 p.
  19. Boccaccio A, Pappalettere C. Mechanobiology of fracture healing: Basic principles and applications in orthodontics and orthopaedics. In: Klika V, editor. Theoretical Biomechanics. United Kingdom: IntechOpen; 2011. p. 21-48.
  20. Nekhlopochin A, Nekhlopochin S, Karpinsky M, Shvets A, Karpinskaya E, Yaresko A. Mathematical analysis and optimization of design characteristics of stabilizing vertebral body replacing systems for subaxial cervical fusion using the finite element method. Hirurgiâ pozvonočnika. 2017;14(1):37-45. https://doi. org/10.14531/ss2017.1.37-45
  21. Radchenko VA, Kutsenko VA, Popov AI, Karpinskуi MY, Karpinska OD. Modeling the variants of transpedicular fixation of the thoracic spine in the rejection of onethree vertebrae. Trauma. 2022;18(5):95-102. https://doi.org/10.22141/1608- 1706.5.18.2017.114125
  22. Niinomi M. Mechanical biocompatibilities of titanium alloys for biomedical applications. J Mech Behav Biomed Mater. 2008;1(1):30-42. https://doi. org/10.1016/j.jmbbm.2007.07.001
  23. Bruno AG, Burkhart K, Allaire B, Anderson DE, Bouxsein ML. Spinal loading patterns from biomechanical modeling explain the high incidence of vertebral fractures in the thoracolumbar region. Journal of Bone and Mineral Research. 2017;32(6):1282-90. https://doi.org/10.1002/jbmr.3113
  24. Kurowski PM. Engineering analysis with COSMOSWorks 2007. USA: SDC Publications; 2007. 263 p.
  25. Rao SS. The finite element method in engineering. Netherlands: Elsevier Science; 2005. 663 p.
  26. Goel VK, Gilbertson LG. Basic science of spinal instrumentation. Clin Orthop Relat Res. 1997(335):10-31.
  27. Margulies JY, Thampi SP, Bitan FD, Cora DC. Practical biomechanical considerations for spine implant testing. Chir Narzadow Ruchu Ortop Pol. 1999;64(3):347-64.
  28. Huang P, Gupta MC, Sarigul-Klijn N, Hazelwood S. Two in vivo surgical approaches for lumbar corpectomy using allograft and a metallic implant: A controlled clinical and biomechanical study. Spine J. 2006;6(6):648-58. https://doi.org/10.1016/j. spinee.2006.04.028
  29. La Barbera L, Ottardi C, Villa T. Comparative analysis of international standards for the fatigue testing of posterior spinal fixation systems: The importance of preload in ISO 12189. Spine J. 2015;15(10):2290-6. https://doi.org/10.1016/j. spinee.2015.07.461
  30. Sangondimath G, Sen RK, T FR. DEXA and imaging in osteoporosis. Indian J Orthop. 2023;57(Suppl 1):82-93. https://doi.org/10.1007/s43465-023-01059-2
  31. Yoganandan N, Myklebust JB, Ray G, Sances A, Jr. Mathematical and finite element analysis of spine injuries. Crit Rev Biomed Eng. 1987;15(1):29-93.
  32. Wang MC, Kiapour A, Massaad E, Shin JH, Yoganandan N. A guide to finite element analysis models of the spine for clinicians. J Neurosurg Spine. 2024;40(1):38-44. https://doi.org/10.3171/2023.7.SPINE23164
  33. Ko S, Jung S, Song S, Kim J-Y, Kwon J. Long-term follow-up results in patients with thoracolumbar unstable burst fracture treated with temporary posterior instrumentation without fusion and implant removal surgery: Follow-up results for at least 10 years. Medicine. 2020;99(16).
  34. Dai LY, Jiang SD, Wang XY, Jiang LS. A review of the management of thoracolumbar burst fractures. Surg Neurol. 2007;67(3):221-31; discussion 231. https://doi. org/10.1016/j.surneu.2006.08.081
  35. Han Y, Wang X, Wu J, Xu H, Zhang Z, Li K, et al. Biomechanical finite element analysis of vertebral column resection and posterior unilateral vertebral resection and reconstruction osteotomy. Journal of Orthopaedic Surgery and Research. 2021;16(1):88. https://doi.org/10.1186/s13018-021-02237-4
  36. Nekhlopochyn OS, Verbov VV, Cheshuk IV, Karpinsky MY, Yaresko OV. Biomechanical characteristics of thoracolumbar junction under rotational loading after decompression-stabilization surgery. Bulletin of Problems Bi-ology and Medicine. 2023;1(3). https://doi.org/10.29254/2077-4214-2023-3-170-233- 244

Authors' information:


Nekhlopochyn Oleksii Sergeevich,
MD, PhD, Senior Researcher, Department of Spinal Neurosurgery, Romodanov Neurosurgery Institute of National Academy of Medical Sciences of Ukraine
Researcher ID: P-3103-2017
Scopus ID: 57221505431
ORCID ID: 0000-0002-1180-6881
E-mail: alexeyns@gmail.com

Verbov Vadim Vitalievich,
MD, PhD, Neurosurgeon of Restorative Neurosurgery Department, Romodanov Neurosurgery Institute of National Academy of Medical Sciences of Ukraine, Kyiv, Ukraine
ORCID ID: 0000-0002-3074-9915
E-mail: v.verbov@gmail.com

Cheshuk Ievgen Valerievich,
MD, Neurosurgeon of Restorative Neurosurgery Department, Romodanov Neurosurgery Institute of National Academy of Medical Sciences of Ukraine
ORCID ID: 0000-0002-8063-2141
E-mail: evcheshuk@gmail.com

Vorodi Milan Vadimovich,
MD, Neurosurgeon of Restorative Neurosurgery Department, Romodanov Neurosurgery Institute of National Academy of Medical
Sciences of Ukraine
ORCID ID: 0000-0001-5099-4603
E-mail: milanfanmj@gmail.com

Karpinsky Mykhailo Yurievich,
MD, PhD, Senior Researcher, Laboratory of Biomechanics, Sytenko Institute of Spine and Joint Pathology of National Academy of Medical Sciences of Ukraine
Scopus ID: 35292430800
ORCID: 0000-0002-3004-2610
E-mail: korab.karpinsky9@gmail.com

Yaresko Olexander Vasilievich,
MD, Junior Researcher, Laboratory of Biomechanics, Sytenko Institute of Spine and Joint Pathology of National Academy of Medical Sciences of Ukraine
ORCID ID: 0000-0002-2037-5964
E-mail: avyresko@gmail.com

Information about support in the form of grants, equipment, medications

The authors did not receive financial support from manufacturers of medicines and medical equipment

Conflicts of interest: No conflict

Address for correspondence:


Nekhlopochyn Oleksii Sergeevich,
MD, PhD Senior Researcher, Department of Spinal Neurosurgery, Romodanov Neurosurgery Institute of National Academy of Medical Sciences of Ukraine

04050, Ukraine, Kyiv, Platon Maiborody str., 32

E-mail: alexeyns@gmail.com

Tel.: +38 (095) 0330448

Materials on the topic: