REVIEW ARTICLE

Pediatrics

doi: 10.25005/2074-0581-2025-27-1-143-154
PROGRESSIVE FAMILIAL INTRAHEPATIC CHOLESTASIS IN CHILDREN

R.A. GUDKOV, A.V. DMITRIEV, N.V. FEDINA, V.I. PETROVA

Department of Pediatric Diseases with a Course in Hospital Pediatrics, Ryazan State Medical University named after Acad. I.P. Pavlov, Ryazan, Russian Federation

Objective: To analyze the literature on the epidemiology and pathogenesis of different types of progressive familial intrahepatic cholestasis (PFIC).

Methods: A literature search was conducted on the PubMed platform using the following keywords: progressive familial intrahepatic cholestasis, Byler's disease and syndrome, and neonates. A total of 76 scientific papers published in the past 10 years were selected and analyzed.

Results: PFIC currently encompasses 12 types, all characterized by defective synthesis of proteins that facilitate bile acid transport. Although there are some differences among the types, they generally present with similar clinical symptoms. The diagnosis of most PFIC types can begin by identifying a normal level of γ-glutamyl peptidase in a child who is experiencing direct hyperbilirubinemia.

Conclusion: In the past decade, genetic studies have greatly enhanced our understanding of cholestatic diseases. These studies have uncovered a variety of phenotypes, ranging from severe forms that manifest early to more benign cases that show a temporary neonatal presentation. Additionally, some cases may feature recurrent mild symptoms or develop cholestasis due to pregnancy or certain medications.

Keywords: Progressive familial intrahepatic cholestasis, newborns, children, cholestatic jaundice, direct hyperbilirubinemia.

Download file:


References
  1. Clayton RJ, Iber FL, Ruebner BH, McKusick VA. Byler disease. Fatal familial intrahepatic cholestasis in an amish kindred. Am J Dis Child. 1969;117(1):112-24.
  2. Gunaydin M, Bozkurter Cil AT. Progressive familial intrahepatic cholestasis: diagnosis, management, and treatment. Hepat Med. 2018;10(10):95-104. https://doi.org/10.2147/HMER.S137209
  3. Vitale G, Gitto S, Vukotic R, Raimondi F, Andreone P. Familial intrahepatic cholestasis: New and wide perspectives. Dig Liver Dis. 2019;51:922-33. https:// doi.org/10.1016/j.dld.2019.04.013
  4. Henkel SA, Squires JH, Ayers M, Ganoza A, Mckiernan P, Squires JE. Expanding etiology of progressive familial intrahepatic cholestasis. World J Hepatol. 2019;11(5):450-63. https://doi.org/10.4254/wjh.v11.i5.450
  5. van der Marka V, Waart DR, Ho-Moka KS, Tabbersb MM, Voogtb HW, Elferinka PJ, et al. The lipid flippase heterodimer ATP8B1-CDC50A is essential for surface expression of the apical sodium-dependent bile acid transporter (SLC10A2/ASBT) in intestinal Caco-2 cells. Biochim Biophys Acta. 2014;1842(12PtA):2378-86. https://doi.org/10.1016/j.bbadis.2014.09.003
  6. Li L, Deheragoda M, Lu Y, Gong J, Wang J. Hypothyroidism associated with ATP8B1 deficiency. J Pediatr. 2015;67(6):1334-9. https://doi.org/10.1016/j. jpeds.2015.08.037
  7. Wang NL, Li LT, Wu BB, Gong JY, Abuduxikuer K, Li G, et al. The features of GGT in patients with ATP8B1 or ABCB11 deficiency improve the diagnostic efficiency. PLoS One. 2016;11(4):e0153114-26. https://doi.org/10.1371/journal. pone.0153114
  8. Bing H, Li YL, Li D, Zhang C, Chang B. Case report: A rare heterozygous ATP8B1 mutation in a BRIC1 patient: Haploinsufficiency? Front Med. 2022;9:897108-14. https://doi.org/10.3389/fmed.2022.897108
  9. Mitra S, Das A, Thapa B, Vasishta KR. Phenotype-genotype correlation of North Indian progressive familial intrahepatic cholestasis type 2 children shows p.Val444Ala and p.Asn591Ser variants and retained BSEP expression. Fetal Pediatr Pathol. 2020;39(2):107-23. https://doi.org/10.1080/15513815.2019.1641 860
  10. Chen J, Wu H, Tang X, and Chen L. 4-Phenylbutyrate protects against rifampininduced liver injury via regulating MRP2 ubiquitination through inhibiting endoplasmic reticulum stress. Bioengineered. 2022;13(2):2866-77. https://doi. org/10.1080/21655979.2021.2024970
  11. Sticova E, Jirsa M, Pawłowska J. New insights in genetic cholestasis: From molecular mechanisms to clinical implications. Can J Gastroenterol Hepatol. 2018;2018:2313675-87. https://doi.org/10.1155/2018/2313675
  12. Cholestasis, Benign Recurrent Intrahepatic, 1 (BRIC1). Mala Cards. Human Disease Database. Weizmann institute of science. https://www.malacards.org/ card/cholestasis_benign_recurrent_intrahepatic_1 [Accessed 12th May 2024].
  13. Chen R, Yang FX, Tan YF, Deng M, Li H, Xu Y, et al. Clinical and genetic characterization of pediatric patients with progressive familial intrahepatic cholestasis type 3 (PFIC3): Identification of 14 novel ABCB4 variants and review of the literatures. Orphanet J Rare Dis. 2022;17(1):445-57. https://doi. org/10.1186/s13023-022-02597-y
  14. Srivastava A. Progressive familial intrahepatic cholestasis. J Clin Exp Hepatol. 2014;4(1):25-36. https://doi.org/10.1016/j.jceh.2013.10.005
  15. Lipiński P, Jankowska I. Progressive familial intrahepatic cholestasis type 3. Dev Period Med. 2018;22(4):385-9. https://doi.org/10.34763/devperiodm ed.20182204.385389
  16. Delaunay JL, Durand‐Schneider A-M, Dossier C, Falguières T, Gautherot J, Davit‐ Spraul A, et al. A functional classification of ABCB4 variations causing progressive familial intrahepatic cholestasis type 3. Hepatology. 2016;63(5):1620-31. https:// doi.org/10.1002/hep.28300т
  17. Alam S, Lal BB. Recent updates on progressive familial intrahepatic cholestasis types 1, 2 and 3: Outcome and therapeutic strategies. World J Hepatol. 2022;14(1):98-118. https://doi.org/10.4254/wjh.v14.i1.98
  18. González-Mariscal L, Gallego-Gutiérrez H, González-González L, Hernández- Guzmán C. ZO-2 Is a master regulator of gene expression, cell proliferation, cytoarchitecture, and cell size. Int J Mol Sci. 2019;20:4128-52. https://doi. org/10.3390/ijms20174128
  19. Sambrotta M, Thompson RJ. Mutations in TJP2, encoding zona occludens 2, and liver disease. Tissue Barriers. 2015;3:e1026537-42. https://doi.org/10.1080/216 88370.2015.1026537
  20. Wei CS, Becher N, Friis JB, Ott P, Vogel I and Gronbæk H. New tight junction protein 2 variant causing progressive familial intrahepatic cholestasis type 4 in adults: A case report. World J Gastroenterol. 2020;26(5):550-61. https://doi. org/10.3748/wjg.v26.i5.550
  21. Ge T, Zhang X, Xiao Y, Wang Y, Zhang T. Novel compound heterozygote mutations of TJP2 in a Chinese child with progressive cholestatic liver disease. BMC Med Genet. 2019;20(1):18-24. https://doi.org/10.1186/s12881-019-0753-7
  22. Mirza N, Bharadwaj R, Malhotra S, Sibal A. Progressive familial intrahepatic cholestasis type 4 in an Indian child: Presentation, initial course and novel compound heterozygous mutation. BMJ Case Rep. 2020;13(7):e234193-96. https://doi.org/10.1136/bcr-2019-234193
  23. Halabi H, Kalantan K, Abdulhaq W, Alshaibi H, Almatrafi MA. A Rare case of progressive familial intrahepatic cholestasis type 4: A case report and literature review. Cureus. 2023;15(10):e47276-81. https://doi.org/10.7759/cureus.47276
  24. Dixon PH, Sambrotta M, Chambers J, Taylor-Harris P, Syngelaki A, Nicolaides K, et al. An expanded role for heterozygous mutations of ABCB4, ABCB11, ATP8B1, ABCC2 and TJP2 in intrahepatic cholestasis of pregnancy. Sci Rep. 2017;7(1):11823-31. https://doi.org/10.1038/s41598-017-11626-x
  25. Sambrotta M, Strautnieks S, Papouli E, Rushton P, Clark BE., Parry DA, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46(4):326-8. https://doi.org/10.1038/ng.2918
  26. Tang J, Tan M, Deng Y, Tang H, Shi H, Li M, et al. Two novel pathogenic variants of TJP2 gene and the underlying molecular mechanisms in progressive familial intrahepatic cholestasis type 4 patients. Front Cell Dev Biol. 2021;9:661599-1611. https://doi.10.3389/fcell.2021.661599
  27. Czubkowski Р, Thompson RJ, Jankowska I, Knisely AS, Finegold M, Parsons P, et al. Progressive familial intrahepatic cholestasis – farnesoid X receptor deficiency due to NR1H4 mutation: A case report. World J Clin Cases. 2021;9(15):3631-6. https://doi.org/10.12998/wjcc.v9.i15.3631
  28. Appelman MD, van der Veen SW, van Mil SWC. Post-translational modifications of FXR; Implications for cholestasis and obesity-related disorders. Front Endocrinol. 2021;12:729828-9841. https://doi.org/10.3389/fendo.2021.729828
  29. Van Zutphen T, Stroeve JHM, Yang J, Bloks VW, Jurdzinski A, Roelofsen H, et al. FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. J Lipid Res. 2019;60(9):1547-61. https://doi.org/10.1194/jlr.M094508
  30. Byun S, Jung H, Chen J, Kim YC, Kim XDH, Kong B, et al. Phosphorylation of hepatic farnesoid X receptor by FGF19 signaling-activated Src maintains cholesterol levels and protects from atherosclerosis. J Biol Chem. 2019;294(22):8732-44. https://doi.org/10.1074/jbc.RA119.008360
  31. Cariello M, Piccinin E, Garcia-Irigoyen O, Sabbà C, Moschetta A. Nuclear receptor FXR, bile acids and liver damage: Introducing the progressive familial intrahepatic cholestasis with FXR mutations. Biochim Biophys Acta Mol Basis Dis. 2018;1864:1308-18. https://doi.org/10.1016/j.bbadis.2017.09.019
  32. Gomez-Ospina N, Potter C, Xiao R., Manickam K., Kim MS, Kim KH, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun. 2016;7:10713. https://doi.org/10.1038/ ncomms10713
  33. Chen HL, Li HY, Wu JF, Wu SH, Chen HL, Yang YH, et al. Panel-based nextgeneration sequencing for the diagnosis of cholestatic genetic liver diseases: Clinical utility and challenges. J Pediatr. 2019;205:153-9.e6. https://doi:10.1016/j. jpeds.2018.09.028
  34. Himes RW, Mojarrad M, Eslahi A, Finegold MJ, MaroofianR, Moore DD. NR1H4- related progressive familial intrahepatic cholestasis 5: Further evidence for rapidly progressive liver failure. J Pediatr Gastroenterol Nutr. 2020;70:e111-113. https://doi.org/10.1097/MPG.0000000000002670
  35. Carino A, Biagioli M, Marchianò S, Fiorucci C , Bordoni M, Roselli R, et al. Opposite effects of the FXR agonist obeticholic acid on Mafg and Nrf2 mediate the development of acute liver injury in rodent models of cholestasis. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(9):158733-43. https://10.1016/j. bbalip.2020.158733
  36. Lin YC, Wang FS, Yang YL, Chuang YT and Huang YH. MicroRNA-29a mitigation of toll-like receptor 2 and 4 signaling and alleviation of obstructive jaundiceinduced fibrosis in mice. Biochem Biophys Res Commun. 2018;496(3):880-6. https://doi.org/10.1016/j.bbrc.2018.01.132
  37. El Kasmi KC, Ghosh S, Anderson AL, Devereaux MW, Balasubramaniyan N, D'Alessandro A, et al. Pharmacologic activation of hepatic farnesoid X receptor prevents parenteral nutrition-associated cholestasis in mice. Hepatology. 2022;75(2):252-65. https://doi.org/10.1002/hep.32101
  38. Kunst RF, Verkade HJ, Oude Elferink RPJ, van de Graaf SFJ. Targeting the four pillars of enterohepatic bile salt cycling; Lessons from genetics and pharmacology. Hepatology. 2021;73(6):2577-85. https://doi.org/10.1002/hep.31651
  39. Ballatori N, Christian WV, Wheeler SG, and Hammond CL. The heteromeric organic solute transporter, ostα-ostβ/SLC51: A transporter for steroid-derived molecules. Mol Asp Med. 2013;34(2-3):683-92. https://doi.org/10.1016/j. mam.2012.11.005
  40. Beaudoin JJ, Bezençon J, Sjöstedt N, Fallon JK, Brouwer KLR. Role of organic solute transporter Alpha/Beta in hepatotoxic bile acid transport and drug interactions. Toxicol Sci. 2020;176(1):34-5. https://doi.org/10.1093/toxsci/kfaa052
  41. Murphy WA, Beaudoin JJ, Laitinen T, Sjöstedt N , Malinen MM, Ho H, et al. Identification of key amino acids that impact organic solute transporter α/β (OSTα/β). Molecular Pharmacology. 2021;100(6):599-608. https://doi. org/10.1124/molpharm.121.000345
  42. Malinen MM, Ali I, Bezençon J, Beaudoin JJ, Brouwer KLR. Organic solute transporter OSTα/β is overexpressed in nonalcoholic steatohepatitis and modulated by drugs associated with liver injury. Am J Physiol Gastrointest Liver Physiol. 2018;314(5):597-609. https://doi.org/10.1152/ajpgi.00310.2017
  43. Gao E, Cheema H, Waheed N, Mushtaq I , Erden N, Williams CN, et al. Organic solute transporter Alpha deficiency: A disorder with cholestasis, liver fibrosis, and congenital diarrhea. Hepatology. 2020;71(5):1879-82. https://doi.org/10.1002/ hep.31087
  44. Sultan M, Rao A, Elpeleg O, Vaz FM, Libdeh BA , Karpen SJ, et al. Organic solute transporter-β (SLC51B) deficiency in two brothers with congenital diarrhea and features of cholestasis. Hepatology. 2018;68(2):590-8. https://doi.org/10.1002/ hep.29516
  45. Alhebbi H, Peer-Zada AA, Al-Hussaini AA, Algubaisi S, Albassami A , Masri NA, et al. New paradigms of USP53 disease: Normal GGT cholestasis, BRIC, cholangiopathy, and responsiveness to rifampicin. J Hum Genet. 2021;66(2):151- 9. https://doi.org/10.1038/s10038-020-0811-1
  46. Bull LN, Ellmers R, Foskett P, Strautnieks S, Sambrotta M, Czubkowski P, et al. Cholestasis due to USP53 deficiency. J Pediatr Gastroenterol Nutr. 2021;72(5):667- 73. https://doi.org/10.1097/MPG.0000000000002926
  47. Gezdirici A, Kalaycik Şengül Ö, Doğan M, Özgüven BY, Akbulut E. Biallelic novel USP53 splicing variant disrupting the gene function that causes cholestasis phenotype and review of the literature. Mol Syndromol. 2023;13(6):471-84. https://doi.org/10.1159/000523937
  48. Maddirevula S, Alhebbi H, Alqahtani A, Algoufi T, Alsaif HS, Ibrahim N, et al. Identification of novel loci for pediatric cholestatic liver disease defined by KIF12, PPM1F, USP53, LSR, and WDR83OS pathogenic variants. Genet Med. 2019;21(5):1164-72. https://10.1038/s41436-018-0288-x
  49. Zhang J, Yang Y, Gong JY LiL T , Li JQ, Zhang MH, et al. Low-GGT intrahepatic cholestasis associated with biallelic USP53 variants: Clinical, histological and ultrastructural characterization. Liver Int. 2020;40(5):1142-50. https://doi. org/10.1111/liv.14422
  50. Ateş BB, Ceylan AC, Hızal G, Duran F, Doğan HT, Hızlı Ş. A novel homozygous mutation in the USP53 gene as the cause of benign recurrent intrahepatic cholestasis in children: A case report. Turk J Pediatr. 2023;65(6):1012-7. https:// doi.org/10.24953/turkjped.2023.367
  51. Shatokhina O, Semenova N, Demina N, Dadali E, Polyakov A, Ryzhkova O. A two-year clinical description of a patient with a rare type of low-GGT cholestasis caused by a novel variant of USP53. Genes (Basel). 2021;12(10):1618-25. https:// doi.org//10.3390/genes12101618
  52. Aksu Ü A, Das SK, Nelson-Williams C, Jain D, Hoşnut ÖF, Şahin GE, et al. Recessive mutations in KIF12 cause high gamma-glutamyltransferase cholestasis. Hepatol Commun. 2019;3(4):471-7. https://doi.org/10.1002/hep4.1320
  53. Stalke A, Sgodda M, Cantz T, Skawran B, Lainka E , Hartleben B, et al. KIF12 variants and disturbed hepatocyte polarity in children with a phenotypic spectrum of cholestatic liver disease. J Pediatr. 2022;240:284-291.e9. https:// doi.org/10.1016/j.jpeds.2021.09.019
  54. Azabdaftari A, Sczakiel HL, Danyel M, Kohlmaier B, Mache CJ, Stalke A, et al. Biallelic known and novel DCDC2 variants in cholestatic liver disease: Phenotypegenotype observations in four children. Liver Int. 2023;43(5):1089-95. https:// doi.org/10.1111/liv.15563
  55. Wei X, Fang Y, Wang JS, Wang YZ , Zhang Y, Abuduxikuer K, et al. Neonatal sclerosing cholangitis with novel mutations in DCDC2 (doublecortin domaincontaining protein 2) in Chinese children. Front Pediatr. 2023;11:1094895-10. https://doi.org/10.3389/fped.2023.1094895.
  56. Girard M, Bizet AA, Lachaux A, Gonzales E, Filhol E, Collardeau-Frachonet S, et al. DCDC2 mutations cause neonatal sclerosing cholangitis. Hum Mutat. 2016;37(10):1025-9. https://doi.org/10.1002/humu.23031
  57. Grammatikopoulos T, Sambrotta M, Strautnieks S, Foskett P , Knisely AS, Wagner B, et al. Mutations in DCDC2 (doublecortin domain containing protein 2) in neonatal sclerosing cholangitis. J Hepatol. 2016;65(6):1179-87. https://doi. org/10.1016/j.jhep.2016.07.017
  58. Grati M, Chakchouk I, Ma Q, BensaidM, Desmidt A , Turki N, et al. A missense mutation in DCDC2 causes human recessive deafness DFNB66, likely by interfering with sensory hair cell and supporting cell cilia length regulation. Hum Mol Genet. 2015;24(9):2482-91. https://doi.org/10.1093/hmg/ddv009
  59. Syryn H, Hoorens A, Grammatikopoulos T, Deheragoda M, Symoens S , VeldeS V, et al. Two cases of DCDC2-related neonatal sclerosing cholangitis with developmental delay and literature review. Clin Genet. 2021;100(4):447-52. https://doi.org/10.1111/cge.14012
  60. Li JQ, Lu Y, Qiu YL, Wang JS. Neonatal sclerosing cholangitis caused by DCDC2 variations in two siblings and literature review. Zhonghua Er Ke Za Zhi. 2018;56(8):623-30. https://doi.org/10.3760/cma.j.issn.0578-1310.2018.08.013
  61. Vogel GF, Maurer E, Entenmann A, Straub S, Knisely AS, Janecke AR, et al. Coexistence of ABCB11 and DCDC2 disease: Infantile cholestasis requires both next generation sequencing and clinical-histopathologic correlation. Eur J Hum Genet. 2020;28(6):840-4. https://doi.org/10.1038/s41431-020-0613-0
  62. Lin Y, Zhang J, Li X, Zheng D, Yu X, Liu Y, et al. Biallelic mutations in DCDC2 cause neonatal sclerosing cholangitis in a Chinese family. Clin Res Hepatol Gastroenterol. 2020;44(5):103-11. https://doi.org/10.1016/j.clinre.2020.02.015
  63. Chen J, Zhang XX, Liu HD, Chen X. Neonatal sclerosing cholangitis caused by a novel DCDC2 gene variant: A case report and literature review. Chin Pediatr Emerg Med. 2020;27(2):158-60. https://doi.org/10.3760/cma.j.is sn.1673-4912.2020.02.019
  64. Mandato C, Siano MA, Nazzaro L, Gelzo M, Francalanci P, Rizzo F, et al. A ZFYVE19 gene mutation associated with neonatal cholestasis and cilia dysfunction: Case report with a novel pathogenic variant. Orphanet J Rare Dis. 2021;16(1):179-88. https://doi.org/10.1186/s13023-021-01775-8
  65. Luan W, Hao C, Li J, Wei Q, Gong JY , Qiu YL, et al. Biallelic loss-of- function ZFYVE19 mutations are associated with congenital hepatic fibrosis, sclerosing cholangiopathy and high-GGT cholestasis. Journal of Medical Genetics. 2021;58:514-25. https://doi.org/10.1136/jmedgenet-2019-106706
  66. Pepe A, Colucci A, Carucci M, Nazzaro L , Bucci C , Ranucci G, et al. Case report: Add-on treatment with odevixibat in a new subtype of progressive familial intrahepatic cholestasis broadens the therapeutic horizon of genetic cholestasis. Front Pediatr. 2023;11:1061535-40. https://doi.org/10.3389/ fped.2023.1061535
  67. Engevik AC, Kaji I, Engevik MA, Meyer AR , Weis VG , Goldstein A, et al. Loss of MYO5B leads to reductions in Na+ absorption with maintenance of CFTR- dependent Cl-secretion in enterocytes. Gastroenterology. 2018;155(6):1883-97. https://doi.org/10.1053/j.gastro.2018.08.025
  68. Gonzales E, Taylor SA, Davit-Spraul A, Thébaut A, Thomassin N, Guettier C, et al. MYO5B mutations cause cholestasis with normal serum gamma-glutamyl transferase activity in children without microvillous inclusion disease. Hepatology. 2017;65(1):164-73. https://doi.org/10.1002/hep.28779
  69. Aldrian D, Vogel GF, Frey TK, Civan HA, Aksu AÜ, Avitzur Y, et al. Congenital diarrhea and cholestatic liver disease: Phenotypic spectrum associated with MYO5B mutations. J Clin Med. 2021;10(3):481-96. https://doi.org/10.3390/ jcm10030481
  70. Qiu YL, Gong JY, Feng JY, Wang RX, Han J, Liu T, et al. Defects in myosin VB are associated with a spectrum of previously undiagnosed low γ-glutamyltransferase cholestasis. Hepatology. 2017;65(5):1655-69. https://doi.org/10.1002/ hep.29020
  71. Cockar I, Foskett P, Strautnieks S, Clinch Y, Fustok J, Rahman O, et al. Mutations in myosin 5B in children with early-onset cholestasis. J Pediat Gastroent Nutr. 2020;71:184-8. https://doi.org/10.1097/MPG.0000000000002740
  72. Overeem AW, Li Q, Qiu YL, Cartón-García F, Leng C, Klappe K, et al. A molecular mechanism underlying genotype-specific intrahepatic cholestasis resulting from MYO5B mutations. Hepatology. 2020;72:213-29. https://doi.org/10.1002/ hep.31002
  73. van I Jzendoorn SCD, Li Q, Qiu YL, Wang JS, Overeem AW. Unequal effects of myosin 5B mutations in liver and intestine determine the clinical presentation of low-gamma-glutamyltransferase cholestasis. Hepatology. 2020;72(4):1461-8. https://doi.org/10.1002/hep.31430
  74. Pan Q, Luo G, Qu J, Chen S, Chen S, Zhang X, Zhao N, et al. A homozygous R148W mutation in Semaphorin 7A causes progressive familial intrahepatic cholestasis. EMBO Mol Med. 2021;13(11):14563-74. https://doi.org/10.15252/ emmm.202114563
  75. Seltsam A, Strigens S, Levene C, Yahalom V, Moulds M, Moulds JJ, et al. The molecular diversity of Sema7A, the semaphorin that carries the JMH blood group antigens. Transfusion. 2007;47:133-46. https://doi.org/10.1111/j.1537- 2995.2007.01076.x
  76. Fu K, Wang C, Gao Y, Fan S, Fan S, Zhang H, Sun J, et al. Metabolomics and lipidomics reveal the effect of hepatic Vps33b deficiency on bile acids and lipids metabolism. Front Pharmacol. 2019;10:276-89. https://doi.org/10.3389/ fphar.2019.00276

Authors' information:


Gudkov Roman Anatolyevich,
Candidate of Medical Sciences, Associate Professor of the Department of Pediatric Diseases with a Course in Hospital Pediatrics, Ryazan State Medical University named after Acad. I.P. Pavlov
ORCID ID: 0000-0002-4060-9692
SPIN: 3065-4800
Author ID: 759674
E-mail: comancherro@mail.ru

Dmitriev Andrey Vladimirovich,
Doctor of Medical Sciences, Full Professor, Head of the Department of Pediatric Diseases with a Course in Hospital Pediatrics, Ryazan State Medical University named after Acad. I.P. Pavlov
ORCID ID: 0000-0002-8202-3876
SPIN: 9059-2164
Author ID: 759673
E-mail: aakavd@yandex.ru

Fedina Natalia Vasilyevna,
Candidate of Medical Sciences, Associate Professor of the Department of Pediatric Diseases with a Course in Hospital Pediatrics, Ryazan State Medical University named after Acad. I.P. Pavlov
ORCID ID: 0000-0001-6307-7249
SPIN: 2128-5240
Author ID: 459890
E-mail: k2ataka@mail.ru

Petrova Valeria Igorevna,
Candidate of Medical Sciences, Associate Professor of the Department of Pediatric Diseases with a Course in Hospital Pediatrics, Ryazan State Medical University named after Acad. I.P. Pavlov
ORCID ID: 0000-0001-5205-0956
SPIN: 2747-5836
Author ID: 407425
E-mail: gtpf17@gmail.com

Information about support in the form of grants, equipment, medications

The authors did not receive financial support from manufacturers of medicines and medical equipment

Conflicts of interest: No conflict

Address for correspondence:


Fedina Natalia Vasilyevna
Candidate of Medical Sciences, Associate Professor of the Department of Pediatric Diseases with a Course in Hospital Pediatrics, Ryazan State Medical University named after Acad. I.P. Pavlov

390026, Russian Federation, Ryazan, Vysokovoltnaya str., 9

Tel.: +7 (953) 7426836

E-mail: k2ataka@mail.ru


This work is licensed under a Creative Commons Attribution 4.0 International License.

Materials on the topic: